Heike Trautmann
University of Münster
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Heike Trautmann.
genetic and evolutionary computation conference | 2011
Olaf Mersmann; Bernd Bischl; Heike Trautmann; Mike Preuss; Claus Weihs; Günter Rudolph
Exploratory Landscape Analysis subsumes a number of techniques employed to obtain knowledge about the properties of an unknown optimization problem, especially insofar as these properties are important for the performance of optimization algorithms. Where in a first attempt, one could rely on high-level features designed by experts, we approach the problem from a different angle here, namely by using relatively cheap low-level computer generated features. Interestingly, very few features are needed to separate the BBOB problem groups and also for relating a problem to high-level, expert designed features, paving the way for automatic algorithm selection.
genetic and evolutionary computation conference | 2012
Dimo Brockhoff; Tobias Wagner; Heike Trautmann
In multiobjective optimization, set-based performance indicators are commonly used to assess the quality of a Pareto front approximation. Based on the scalarization obtained by these indicators, a performance comparison of multiobjective optimization algorithms becomes possible. The R2 and the Hypervolume (HV) indicator represent two recommended approaches which have shown a correlated behavior in recent empirical studies. Whereas the HV indicator has been comprehensively analyzed in the last years, almost no studies on the R2 indicator exist. In this paper, we thus perform a comprehensive investigation of the properties of the R2 indicator in a theoretical and empirical way. The influence of the number and distribution of the weight vectors on the optimal distribution of μ solutions is analyzed. Based on a comparative analysis, specific characteristics and differences of the R2 and HV indicator are presented.
IEEE Transactions on Evolutionary Computation | 2010
Tobias Wagner; Heike Trautmann
In this paper, a concept for efficiently approximating the practically relevant regions of the Pareto front (PF) is introduced. Instead of the original objectives, desirability functions (DFs) of the objectives are optimized, which express the preferences of the decision maker. The original problem formulation and the optimization algorithm do not have to be modified. DFs map an objective to the domain [0, 1] and nonlinearly increase with better objective quality. By means of this mapping, values of different objectives and units become comparable. A biased distribution of the solutions in the PF approximation based on different scalings of the objectives is prevented. Thus, we propose the integration of DFs into the S-metric selection evolutionary multiobjective algorithm. The transformation ensures the meaning of the hypervolumes internally computed. Furthermore, it is shown that the reference point for the hypervolume calculation can be set intuitively. The approach is analyzed using standard test problems. Moreover, a practical validation by means of the optimization of a turning process is performed.
electronic commerce | 2012
Bernd Bischl; Olaf Mersmann; Heike Trautmann; Claus Weihs
Meta-modeling has become a crucial tool in solving expensive optimization problems. Much of the work in the past has focused on finding a good regression method to model the fitness function. Examples include classical linear regression, splines, neural networks, Kriging and support vector regression. This paper specifically draws attention to the fact that assessing model accuracy is a crucial aspect in the meta-modeling framework. Resampling strategies such as cross-validation, subsampling, bootstrapping, and nested resampling are prominent methods for model validation and are systematically discussed with respect to possible pitfalls, shortcomings, and specific features. A survey of meta-modeling techniques within evolutionary optimization is provided. In addition, practical examples illustrating some of the pitfalls associated with model selection and performance assessment are presented. Finally, recommendations are given for choosing a model validation technique for a particular setting.
Engineering Optimization | 2009
Heike Trautmann; Jörn Mehnen
In this article a method for including a priori preferences of decision makers into multicriteria optimization problems is presented. A set of Pareto-optimal solutions is determined via desirability functions of the objectives which reveal experts’ preferences regarding different objective regions. An application to noisy objective functions is not straightforward but very relevant for practical applications. Two approaches are introduced in order to handle the respective uncertainties by means of the proposed preference-based Pareto optimization. By applying the methods to the original and uncertain Binh problem and a noisy single cut turning cost optimization problem, these approaches prove to be very effective in focusing on different parts of the Pareto front of the ori-ginal problem in both certain and noisy environments.
Annals of Mathematics and Artificial Intelligence | 2013
Olaf Mersmann; Bernd Bischl; Heike Trautmann; Markus Wagner; Jakob Bossek; Frank Neumann
Meta-heuristics are frequently used to tackle NP-hard combinatorial optimization problems. With this paper we contribute to the understanding of the success of 2-opt based local search algorithms for solving the traveling salesperson problem (TSP). Although 2-opt is widely used in practice, it is hard to understand its success from a theoretical perspective. We take a statistical approach and examine the features of TSP instances that make the problem either hard or easy to solve. As a measure of problem difficulty for 2-opt we use the approximation ratio that it achieves on a given instance. Our investigations point out important features that make TSP instances hard or easy to be approximated by 2-opt.
international conference on evolutionary multi criterion optimization | 2009
Tobias Wagner; Heike Trautmann; Boris Naujoks
Over the last decades, evolutionary algorithms (EA) have proven their applicability to hard and complex industrial optimization problems in many cases. However, especially in cases with high computational demands for fitness evaluations (FE), the number of required FE is often seen as a drawback of these techniques. This is partly due to lacking robust and reliable methods to determine convergence, which would stop the algorithm before useless evaluations are carried out. To overcome this drawback, we define a method for online convergence detection (OCD) based on statistical tests, which invokes a number of performance indicators and which can be applied on a stand-alone basis (no predefined Pareto fronts, ideal and reference points). Our experiments show the general applicability of OCD by analyzing its performance for different algorithmic setups and on different classes of test functions. Furthermore, we show that the number of FE can be reduced considerably --- compared to common suggestions from literature --- without significantly deteriorating approximation accuracy.
parallel problem solving from nature | 2008
Heike Trautmann; Uwe Ligges; Jörn Mehnen; Mike Preuss
A systematic approach for determining the generation number at which a specific Multi-Objective Evolutionary Algorithm (MOEA) has converged for a given optimization problem is introduced. Convergence is measured by the performance indicators Generational Distance, Spread and Hypervolume. The stochastic nature of the MOEA is taken into account by repeated runs per generation number which results in a highly robust procedure. For each generation number the MOEA is repeated a fixed number of times, and the Kolmogorow-Smirnov-Test is used in order to decide if a significant change in performance is gained in comparison to preceding generations. A comparison of different MOEAs on a problem with respect to necessary generation numbers becomes possible, and the understanding of the algorithms behaviour is supported by analysing the development of the indicator values. The procedure is illustrated by means of standard test problems.
electronic commerce | 2009
Heike Trautmann; Tobias Wagner; Boris Naujoks; Mike Preuss; Jörn Mehnen
In this paper, two approaches for estimating the generation in which a multi-objective evolutionary algorithm (MOEA) shows statistically significant signs of convergence are introduced. A set-based perspective is taken where convergence is measured by performance indicators. The proposed techniques fulfill the requirements of proper statistical assessment on the one hand and efficient optimisation for real-world problems on the other hand. The first approach accounts for the stochastic nature of the MOEA by repeating the optimisation runs for increasing generation numbers and analysing the performance indicators using statistical tools. This technique results in a very robust offline procedure. Moreover, an online convergence detection method is introduced as well. This method automatically stops the MOEA when either the variance of the performance indicators falls below a specified threshold or a stagnation of their overall trend is detected. Both methods are analysed and compared for two MOEA and on different classes of benchmark functions. It is shown that the methods successfully operate on all stated problems needing less function evaluations while preserving good approximation quality at the same time.
international conference on evolutionary multi criterion optimization | 2011
Tobias Wagner; Heike Trautmann; Luis Martí
The use of multi-objective evolutionary algorithms for solving black-box problems with multiple conflicting objectives has become an important research area. However, when no gradient information is available, the examination of formal convergence or optimality criteria is often impossible. Thus, sophisticated heuristic online stopping criteria (OSC) have recently become subject of intensive research. In order to establish formal guidelines for a systematic research, we present a taxonomy of OSC in this paper.We integrate the known approaches within the taxonomy and discuss them by extracting their building blocks. The formal structure of the taxonomy is used as a basis for the implementation of a comprehensive MATLAB toolbox. Both contributions, the formal taxonomy and the MATLAB implementation, provide a framework for the analysis and evaluation of existing and new OSC approaches.