Heike Vallery
Delft University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Heike Vallery.
Journal of Neuroengineering and Rehabilitation | 2015
Michael R. Tucker; Jeremy Olivier; Anna Pagel; Hannes Bleuler; Mohamed Bouri; Olivier Lambercy; José del R. Millán; Robert Riener; Heike Vallery; Roger Gassert
Technological advancements have led to the development of numerous wearable robotic devices for the physical assistance and restoration of human locomotion. While many challenges remain with respect to the mechanical design of such devices, it is at least equally challenging and important to develop strategies to control them in concert with the intentions of the user.This work reviews the state-of-the-art techniques for controlling portable active lower limb prosthetic and orthotic (P/O) devices in the context of locomotive activities of daily living (ADL), and considers how these can be interfaced with the user’s sensory-motor control system. This review underscores the practical challenges and opportunities associated with P/O control, which can be used to accelerate future developments in this field. Furthermore, this work provides a classification scheme for the comparison of the various control strategies.As a novel contribution, a general framework for the control of portable gait-assistance devices is proposed. This framework accounts for the physical and informatic interactions between the controller, the user, the environment, and the mechanical device itself. Such a treatment of P/Os – not as independent devices, but as actors within an ecosystem – is suggested to be necessary to structure the next generation of intelligent and multifunctional controllers.Each element of the proposed framework is discussed with respect to the role that it plays in the assistance of locomotion, along with how its states can be sensed as inputs to the controller. The reviewed controllers are shown to fit within different levels of a hierarchical scheme, which loosely resembles the structure and functionality of the nominal human central nervous system (CNS). Active and passive safety mechanisms are considered to be central aspects underlying all of P/O design and control, and are shown to be critical for regulatory approval of such devices for real-world use.The works discussed herein provide evidence that, while we are getting ever closer, significant challenges still exist for the development of controllers for portable powered P/O devices that can seamlessly integrate with the user’s neuromusculoskeletal system and are practical for use in locomotive ADL.
IEEE Robotics & Automation Magazine | 2008
Heike Vallery; Jan F. Veneman; van Edwin H.F. Asseldonk; R. Ekkelenkamp; Martin Buss; van der Herman Kooij
This article discusses the pros and cons of compliant actuation for rehabilitation robots on the example of LOPES, focusing on the cons. After illustrating the bandwidth limitations, a new result has been derived: if stability in terms of passivity of the haptic device is desired, the renderable stiffness is bounded by the stiffness of the SEAs elastic component. In practical experiments with the VMC, the aforementioned limitations affected the control performance. Desired gait modifications were not tracked exactly, because the subjects were able to deviate from the prescribed pattern even in the stiffest possible configuration. Despite the limitations, the practical experiments also demonstrated the general effectiveness of the realization. Manipulation of selected gait parameters is possible, whereby other parameters are left unaffected. This high selectivity is made possible by the low level of undesired interaction torques, which is achieved by elastic decoupling of motor mass and a lightweight exoskeleton. The discrepancy between theoretical bounds and rendered stiffness indicated that healthy subjects might represent a stabilizing component of the coupled system, which could be different for patients. In light of the theoretical stability analysis and with the focus on patients, the LOPES actuation was slightly modified. The robot was equipped with stiffer springs to obtain sufficient stiffness and to ensure stability without relying on stabilizing effects of the human. For this application, the disadvantages of compliant actuation can thus be tolerated or dealt with, and they are small compared with the advantages. Given that a rehabilitation robot, in the first place, is supposed to imitate therapist action, the limitations of bandwidth and stiffness do not pose severe problems. In contrast, safety and backdrivability are highly relevant, and they can be ensured easier with a compliant actuator. Therefore, we conclude that compliant actuation and a lightweight exoskeleton provide effective means to accomplish the desired AAN behavior of a rehabilitation robot. The next step is to evaluate the robot behavior, control performance, and therapeutic effectiveness in patient studies.
intelligent robots and systems | 2007
Heike Vallery; R. Ekkelenkamp; H. van der Kooij; Martin Buss
The principle of series elastic actuation offers considerable advantages for haptic displays compared to stiff actuators. The interaction force between motor and load is directly proportional to their relative position, which corresponds to the elongation of the elastic element. This way, the torque control task is transformed to a position control task, which comes natural to traditional DC motors. In this paper, several existing control strategies are analyzed and compared with respect to passivity concerns. Cascaded control with a fast inner velocity loop results to be the best option. Based on the analysis, boundaries for the parameters are presented, such that the force controller may contain integral action without jeopardizing passivity.
Journal of Neuroengineering and Rehabilitation | 2012
Andrew Pennycott; Dario Wyss; Heike Vallery; Verena Klamroth-Marganska; Robert Riener
BackgroundStroke is the most common cause of disability in the developed world and can severely degrade walking function. Robot-driven gait therapy can provide assistance to patients during training and offers a number of advantages over other forms of therapy. These potential benefits do not, however, seem to have been fully realised as of yet in clinical practice.ObjectivesThis review determines ways in which robot-driven gait technology could be improved in order to achieve better outcomes in gait rehabilitation.MethodsThe literature on gait impairments caused by stroke is reviewed, followed by research detailing the different pathways to recovery. The outcomes of clinical trials investigating robot-driven gait therapy are then examined. Finally, an analysis of the literature focused on the technical features of the robot-based devices is presented. This review thus combines both clinical and technical aspects in order to determine the routes by which robot-driven gait therapy could be further developed.ConclusionsActive subject participation in robot-driven gait therapy is vital to many of the potential recovery pathways and is therefore an important feature of gait training. Higher levels of subject participation and challenge could be promoted through designs with a high emphasis on robotic transparency and sufficient degrees of freedom to allow other aspects of gait such as balance to be incorporated.
IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2009
Heike Vallery; E.H.F. van Asseldonk; Martin Buss; H. van der Kooij
For gait rehabilitation robots, an important question is how to ensure stable gait, while avoiding any interaction forces between robot and human in case the patient walks correctly. To achieve this, the definition of ldquocorrectrdquo gait needs to adapted both to the individual patient and to the situation. Recently, we proposed a method for online trajectory generation that can be applied for hemiparetic subjects. Desired states for one (disabled) leg are generated online based on the movements of the other (sound) leg. An instantaneous mapping between legs is performed by exploiting physiological interjoint couplings. This way, the patient generates the reference motion for the affected leg autonomously. The approach, called Complementary Limb Motion Estimation (CLME), is implemented on the LOPES gait rehabilitation robot and evaluated with healthy subjects in two different experiments. In a previously described study, subjects walk only with one leg, while the robots other leg acts as a fake prosthesis, to simulate complete loss of function in one leg. This study showed that CLME ensures stable gait. In a second study, to be presented in this paper, healthy subjects walk with both their own legs to assess the interference with self-determined walking. Evaluation criteria are: Power delivered to the joints by the robot, electromyography (EMG) distortions, and kinematic distortions, all compared to zero torque control, which is the baseline of minimum achievable interference. Results indicate that interference of the robot is lower with CLME than with a fixed reference trajectory, mainly in terms of lowered exchanged power and less alteration of EMG. This implies that subjects can walk more naturally with CLME, and they are assisted less by the robot when it is not needed. Future studies with patients are yet to show whether these properties of CLME transfer to the clinical domain.
Nature Medicine | 2012
Nadia Dominici; Urs Keller; Heike Vallery; Lucia Friedli; Rubia van den Brand; Michelle L Starkey; Pavel Musienko; Robert Riener; Grégoire Courtine
Central nervous system (CNS) disorders distinctly impair locomotor pattern generation and balance, but technical limitations prevent independent assessment and rehabilitation of these subfunctions. Here we introduce a versatile robotic interface to evaluate, enable and train pattern generation and balance independently during natural walking behaviors in rats. In evaluation mode, the robotic interface affords detailed assessments of pattern generation and dynamic equilibrium after spinal cord injury (SCI) and stroke. In enabling mode, the robot acts as a propulsive or postural neuroprosthesis that instantly promotes unexpected locomotor capacities including overground walking after complete SCI, stair climbing following partial SCI and precise paw placement shortly after stroke. In training mode, robot-enabled rehabilitation, epidural electrical stimulation and monoamine agonists reestablish weight-supported locomotion, coordinated steering and balance in rats with a paralyzing SCI. This new robotic technology and associated concepts have broad implications for both assessing and restoring motor functions after CNS disorders, both in animals and in humans.
IEEE Transactions on Biomedical Engineering | 2012
Serge Pfeifer; Heike Vallery; Michael Hardegger; Robert Riener; Eric J. Perreault
During natural locomotion, the stiffness of the human knee is modulated continuously and subconsciously according to the demands of activity and terrain. Given modern actuator technology, powered transfemoral prostheses could theoretically provide a similar degree of sophistication and function. However, experimentally quantifying knee stiffness modulation during natural gait is challenging. Alternatively, joint stiffness could be estimated in a less disruptive manner using electromyography (EMG) combined with kinetic and kinematic measurements to estimate muscle force, together with models that relate muscle force to stiffness. Here we present the first step in that process, where we develop such an approach and evaluate it in isometric conditions, where experimental measurements are more feasible. Our EMG-guided modeling approach allows us to consider conditions with antagonistic muscle activation, a phenomenon commonly observed in physiological gait. Our validation shows that model-based estimates of knee joint stiffness coincide well with experimental data obtained using conventional perturbation techniques. We conclude that knee stiffness can be accurately estimated in isometric conditions without applying perturbations, which presents an important step toward our ultimate goal of quantifying knee stiffness during gait.
ieee international conference on rehabilitation robotics | 2009
Heike Vallery; Alexander Duschau-Wicke; Robert Riener
In the effort to make rehabilitation robots patient-cooperative, two prerequisites have to be met: One is providing the necessary amount of guidance and safety for the patient. Just as important is transparency, i.e. minimum interaction between robot and human when it is not needed. Recently, we suggested the method of Generalized Elasticities, which reduce undesired interaction forces due to robot dynamics by shaping optimal conservative force fields to compensate these dynamics. We now show that these conservative force fields can not only be used to minimize undesired interaction, but that they can also support and guide the patient during therapy when needed. Thus, the patient is given maximum freedom within a safe training environment, with the aim to maximize training efficacy.
Journal of Neuroscience Methods | 2011
Christoph Hollnagel; Mike Brügger; Heike Vallery; Peter Wolf; Volker Dietz; Spyros Kollias; Robert Riener
Little is known about the impact of supraspinal centers on the control of human locomotion. Analyzing brain activity can help to clarify their impact and to improve the effects of locomotor training. A fMRI-compatible pneumatic robotic device is presented that can generate freely programmable, highly repetitive periodic active and passive leg movements comprised by hip, knee, and ankle joint displacements. Forces of up to 400N can be applied to each foot while the subject is lying in a supine position. Magnetic interference of the device with the magnetic field of the scanner is measurable, but does not affect the image quality as obtained by a usual image analysis procedure. In a first experiment, brain activity of one healthy subject was acquired during nine different gait-like movement conditions. Brain activity in the somatosensory and motor function related areas increased more when the subject actively moved the legs than when the legs were passively moved by the device. In almost all conditions, mean head motion could be limited to 2mm within the duration of one fMRI scan by a specifically developed head and trunk fixation system. Based on these results, it is concluded that our device will significantly contribute to a better understanding of human locomotor control and related therapeutic effects in spinal cord injured and stroke patients, and thereby, to improve training approaches.
Journal of Neuroengineering and Rehabilitation | 2012
Alex Schück; Rob Labruyère; Heike Vallery; Robert Riener; Alexander Duschau-Wicke
BackgroundFunctional training is becoming the state-of-the-art therapy approach for rehabilitation of individuals after stroke and spinal cord injury. Robot-aided treadmill training reduces personnel effort, especially when treating severely affected patients. Improving rehabilitation robots towards more patient-cooperative behavior may further increase the effects of robot-aided training. This pilot study aims at investigating the feasibility of applying patient-cooperative robot-aided gait rehabilitation to stroke and incomplete spinal cord injury during a therapy period of four weeks. Short-term effects within one training session as well as the effects of the training on walking function are evaluated.MethodsTwo individuals with chronic incomplete spinal cord injury and two with chronic stroke trained with the Lokomat gait rehabilitation robot which was operated in a new, patient-cooperative mode for a period of four weeks with four training sessions of 45 min per week. At baseline, after two and after four weeks, walking function was assessed with the ten meter walking test. Additionally, muscle activity of the major leg muscles, heart rate and the Borg scale were measured under different walking conditions including a non-cooperative position control mode to investigate the short-term effects of patient-cooperative versus non-cooperative robot-aided gait training.ResultsPatient-cooperative robot-aided gait training was tolerated well by all subjects and performed without difficulties. The subjects trained more actively and with more physiological muscle activity than in a non-cooperative position-control mode. One subject showed a significant and relevant increase of gait speed after the therapy, the three remaining subjects did not show significant changes.ConclusionsPatient-cooperative robot-aided gait training is feasible in clinical practice and overcomes the main points of criticism against robot-aided gait training: It enables patients to train in an active, variable and more natural way. The limited number of subjects in this pilot trial does not permit valid conclusions on the effect of patient-cooperative robot-aided gait training on walking function. A large, possibly multi-center randomized controlled clinical trial is required to shed more light on this question.