Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heikki Hyöty is active.

Publication


Featured researches published by Heikki Hyöty.


The ISME Journal | 2011

Toward defining the autoimmune microbiome for type 1 diabetes

Adriana Giongo; Kelsey A. Gano; David B. Crabb; Nabanita Mukherjee; Luis L Novelo; George Casella; Jennifer C. Drew; Jorma Ilonen; Mikael Knip; Heikki Hyöty; Riitta Veijola; Tuula Simell; Olli Simell; Josef Neu; Clive Wasserfall; Desmond A. Schatz; Mark A. Atkinson; Eric W. Triplett

Several studies have shown that gut bacteria have a role in diabetes in murine models. Specific bacteria have been correlated with the onset of diabetes in a rat model. However, it is unknown whether human intestinal microbes have a role in the development of autoimmunity that often leads to type 1 diabetes (T1D), an autoimmune disorder in which insulin-secreting pancreatic islet cells are destroyed. High-throughput, culture-independent approaches identified bacteria that correlate with the development of T1D-associated autoimmunity in young children who are at high genetic risk for this disorder. The level of bacterial diversity diminishes overtime in these autoimmune subjects relative to that of age-matched, genotype-matched, nonautoimmune individuals. A single species, Bacteroides ovatus, comprised nearly 24% of the total increase in the phylum Bacteroidetes in cases compared with controls. Conversely, another species in controls, represented by the human firmicute strain CO19, represented nearly 20% of the increase in Firmicutes compared with cases overtime. Three lines of evidence are presented that support the notion that, as healthy infants approach the toddler stage, their microbiomes become healthier and more stable, whereas, children who are destined for autoimmunity develop a microbiome that is less diverse and stable. Hence, the autoimmune microbiome for T1D may be distinctly different from that found in healthy children. These data also suggest bacterial markers for the early diagnosis of T1D. In addition, bacteria that negatively correlated with the autoimmune state may prove to be useful in the prevention of autoimmunity development in high-risk children.


Diabetes | 1995

A Prospective Study of the Role of Coxsackie B and Other Enterovirus Infections in the Pathogenesis of IDDM

Heikki Hyöty; Merja Hiltunen; M. Knip; Maria Laakkonen; Paula Vähäsalo; Jukka Karjalainen; Pentti Koskela; Merja Roivainen; Pauli Leinikki; Tapni Hovi; Hans K. Åkerblom

Coxsackievirus B infections have been associated with clinical manifestation of insulin-dependent diabetes mellitus (IDDM) in several studies, but their initiating role in the slowly progressing β-cell damage is not known. This is the first prospective study designed to assess the role of coxsackie B and other enterovirus infections in the induction and acceleration of this process. Three separate series were studied: 1) an intrauterine exposure series comprising 96 pregnant mothers whose children subsequently manifested IDDM and 96 control mothers whose children remained nondiabetic; 2) a cohort of 22 initially unaffected siblings of diabetic children who were followed until they developed clinical IDDM (mean observation time, 29 months) and 110 control siblings who remained nondiabetic; 3) a case-control series comprising 90 children with newly diagnosed IDDM and 90 control subjects. Enterovirus infections were identified on the basis of significant increases in serum IgG, IgM, or IgA class antibodies against a panel of enterovirus antigens (capture radioimmunoassay). Enterovirus antibodies were significantly elevated in pregnant mothers whose children subsequently manifested IDDM, particularly in cases in which IDDM appeared at a very young age, before the age of 3 years (P < 0.005). Serologically verified enterovirus infections were almost two times more frequent in siblings who developed clinical IDDM than in siblings who remained nondiabetic (mean, 1.0 vs. 0.6 infections/follow-up year; P < 0.001). This difference was seen both close to the diagnosis of IDDM and several years before diagnosis. Up to 19% (10 of 52) of the infections in prediabetic siblings were associated with increases in islet cell antibody (ICA) levels, and 83% (10 of 12) of ICAs increase with enterovirus infections. The corresponding figures in control siblings were 3% (5 of 185, P < 0.001) and 38% (5 of 13, Ns). IgM class enterovirus antibodies were slightly elevated in young children (<3 years old)with newly diagnosed IDDM (P < 0.05), but not in older patients. These observations suggest that exposures to enterovirus infections, both in utero and in childhood, are able to induce β-cell damage and lead to clinical IDDM after a varying subclinical period.


PLOS ONE | 2011

Gut Microbiome Metagenomics Analysis Suggests a Functional Model for the Development of Autoimmunity for Type 1 Diabetes

Christopher T. Brown; Austin G. Davis-Richardson; Adriana Giongo; Kelsey A. Gano; David B. Crabb; Nabanita Mukherjee; George Casella; Jennifer C. Drew; Jorma Ilonen; Mikael Knip; Heikki Hyöty; Riitta Veijola; Tuula Simell; Olli Simell; Josef Neu; Clive Wasserfall; Desmond A. Schatz; Mark A. Atkinson; Eric W. Triplett

Recent studies have suggested a bacterial role in the development of autoimmune disorders including type 1 diabetes (T1D). Over 30 billion nucleotide bases of Illumina shotgun metagenomic data were analyzed from stool samples collected from four pairs of matched T1D case-control subjects collected at the time of the development of T1D associated autoimmunity (i.e., autoantibodies). From these, approximately one million open reading frames were predicted and compared to the SEED protein database. Of the 3,849 functions identified in these samples, 144 and 797 were statistically more prevalent in cases and controls, respectively. Genes involved in carbohydrate metabolism, adhesions, motility, phages, prophages, sulfur metabolism, and stress responses were more abundant in cases while genes with roles in DNA and protein metabolism, aerobic respiration, and amino acid synthesis were more common in controls. These data suggest that increased adhesion and flagella synthesis in autoimmune subjects may be involved in triggering a T1D associated autoimmune response. Extensive differences in metabolic potential indicate that autoimmune subjects have a functionally aberrant microbiome. Mining 16S rRNA data from these datasets showed a higher proportion of butyrate-producing and mucin-degrading bacteria in controls compared to cases, while those bacteria that produce short chain fatty acids other than butyrate were higher in cases. Thus, a key rate-limiting step in butyrate synthesis is more abundant in controls. These data suggest that a consortium of lactate- and butyrate-producing bacteria in a healthy gut induce a sufficient amount of mucin synthesis to maintain gut integrity. In contrast, non-butyrate-producing lactate-utilizing bacteria prevent optimal mucin synthesis, as identified in autoimmune subjects.


Journal of Experimental Medicine | 2008

Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes

Matej Orešič; Satu Simell; Marko Sysi-Aho; Kirsti Näntö-Salonen; Tuulikki Seppänen-Laakso; Vilhelmiina Parikka; Mikko Katajamaa; Anne Hekkala; Ismo Mattila; Päivi Keskinen; Laxman Yetukuri; Arja Reinikainen; Jyrki Lähde; Tapani Suortti; Jari Hakalax; Tuula Simell; Heikki Hyöty; Riitta Veijola; Jorma Ilonen; Riitta Lahesmaa; Mikael Knip; Olli Simell

The risk determinants of type 1 diabetes, initiators of autoimmune response, mechanisms regulating progress toward β cell failure, and factors determining time of presentation of clinical diabetes are poorly understood. We investigated changes in the serum metabolome prospectively in children who later progressed to type 1 diabetes. Serum metabolite profiles were compared between sample series drawn from 56 children who progressed to type 1 diabetes and 73 controls who remained nondiabetic and permanently autoantibody negative. Individuals who developed diabetes had reduced serum levels of succinic acid and phosphatidylcholine (PC) at birth, reduced levels of triglycerides and antioxidant ether phospholipids throughout the follow up, and increased levels of proinflammatory lysoPCs several months before seroconversion to autoantibody positivity. The lipid changes were not attributable to HLA-associated genetic risk. The appearance of insulin and glutamic acid decarboxylase autoantibodies was preceded by diminished ketoleucine and elevated glutamic acid. The metabolic profile was partially normalized after the seroconversion. Autoimmunity may thus be a relatively late response to the early metabolic disturbances. Recognition of these preautoimmune alterations may aid in studies of disease pathogenesis and may open a time window for novel type 1 diabetes prevention strategies.


The Lancet | 2008

Nasal insulin to prevent type 1 diabetes in children with HLA genotypes and autoantibodies conferring increased risk of disease: a double-blind, randomised controlled trial

Kirsti Näntö-Salonen; Antti Kupila; Satu Simell; Heli Siljander; Tiina Salonsaari; Anne Hekkala; Sari Korhonen; Risto Erkkola; Jukka Sipilä; Lotta Haavisto; Marja Siltala; Juhani Tuominen; Jari Hakalax; Heikki Hyöty; Jorma Ilonen; Riitta Veijola; Tuula Simell; Mikael Knip; Olli Simell

BACKGROUND In mouse models of diabetes, prophylactic administration of insulin reduced incidence of the disease. We investigated whether administration of nasal insulin decreased the incidence of type 1 diabetes, in children with HLA genotypes and autoantibodies increasing the risk of the disease. METHODS At three university hospitals in Turku, Oulu, and Tampere (Finland), we analysed cord blood samples of 116 720 consecutively born infants, and 3430 of their siblings, for the HLA-DQB1 susceptibility alleles for type 1 diabetes. 17 397 infants and 1613 siblings had increased genetic risk, of whom 11 225 and 1574, respectively, consented to screening of diabetes-associated autoantibodies at every 3-12 months. In a double-blind trial, we randomly assigned 224 infants and 40 siblings positive for two or more autoantibodies, in consecutive samples, to receive short-acting human insulin (1 unit/kg; n=115 and n=22) or placebo (n=109 and n=18) once a day intranasally. We used a restricted randomisation, stratified by site, with permuted blocks of size two. Primary endpoint was diagnosis of diabetes. Analysis was by intention to treat. The study was terminated early because insulin had no beneficial effect. This study is registered with ClinicalTrials.gov, number NCT00223613. FINDINGS Median duration of the intervention was 1.8 years (range 0-9.7). Diabetes was diagnosed in 49 index children randomised to receive insulin, and in 47 randomised to placebo (hazard ratio [HR] 1.14; 95% CI 0.73-1.77). 42 and 38 of these children, respectively, continued treatment until diagnosis, with yearly rates of diabetes onset of 16.8% (95% CI 11.7-21.9) and 15.3% (10.5-20.2). Seven siblings were diagnosed with diabetes in the insulin group, versus six in the placebo group (HR 1.93; 0.56-6.77). In all randomised children, diabetes was diagnosed in 56 in the insulin group, and 53 in the placebo group (HR 0.98; 0.67-1.43, p=0.91). INTERPRETATION In children with HLA-conferred susceptibility to diabetes, administration of nasal insulin, started soon after detection of autoantibodies, could not be shown to prevent or delay type 1 diabetes.


Diabetologia | 2002

The role of viruses in human diabetes

Heikki Hyöty; K. W. Taylor

Abstract. Viruses have long been considered a major environmental factor in the aetiology of Type I (insulin-dependent) diabetes mellitus and recent work has greatly confirmed and extended this role. In addition to the enteroviruses, there are several other viruses which, from time to time, have been considered potential causal agents for human diabetes. With the exception of rubella, their role is not clear.The relation of enteroviruses with Type I diabetes has only been properly clarified by the use of new technologies, especially those based on polymerase chain reaction methods to identify them in blood.It is now evident from studies in several countries that enterovirus infection accompanies or precedes the onset of diabetes in many children. It is less certain whether this is true for older persons or for other types of diabetes. Enterovirus infection in pregnancy has also been suggested to cause diabetes in children.The infection with enteroviruses seems to be linked to the induction of islet-cell autoantibodies as well as to the expression of interferon-α. Both of these events are connected with islet-cell destruction.It has become increasingly important to establish the nature of the infecting virus in the early stages of diabetes. It seems likely that a number of viruses of the coxsackie or echovirus type are involved, although the nature of the nucleotide sequences responsible for diabetogenicity remains elusive.


Diabetologia | 1992

Epidemiology of childhood diabetes mellitus in Finland-background of a nationwide study of type 1 (insulin-dependent) diabetes mellitus

J. Tuomilehto; R. Lounamaa; E. Tuomilehto-Wolf; A. Reunanen; E. Virtala; E. A. Kaprio; Hans K. Åkerblom; L. Toivanen; A. Fagerlund; M. Flittner; B. Gustafsson; A. Hakulinen; L. Herva; P. Hiltunen; T. Huhtamäki; N. P. Huttunen; T. Huupponen; M. Hyttinen; C. Häggqvist; T. Joki; R. Jokisalo; S. Kallio; U. Kaski; M. Knip; M. L. Käär; L. Laine; J. Lappalainen; J. Mäenpää; A. L. Mäkelä; K. Niemi

SummaryA nationwide study of childhood Type 1 (insulin-dependent) diabetes mellitus was established in 1986 in Finland, the country with the highest incidence of this disease worldwide. The aim of the project called “Childhood Diabetes in Finland” is to evaluate the role of genetic, environmental and immunological factors and particularly the interaction between genetic and environmental factors in the development of Type 1 diabetes. From September 1986 to April 1989, 801 families with a newly-diagnosed child aged 14 years or younger at the time of diagnosis were invited to participate in this study. The vast majority of the families agreed to participate in the comprehensive investigations of the study. HLA genotypes and haplotypes were determined in 757 families (95%). Our study also incorporates a prospective family study among non-diabetic siblings aged 3–19 years, and two case-control studies among the youngonset cases of Type 1 diabetes. During 1987–1989, the overall incidence of Type 1 diabetes was about 35.2 per 100,000 per year. It was higher in boys (38.4) than in girls (32.2). There was no clear geographic variation in incidence among the 12 provinces of Finland. Of the 1,014 cases during these 3 years only six cases were diagnosed before their first birthday. The incidence was high already in the age group 1–4-years old: 33.2 in boys and 29.5 in girls. Of the 801 families 90 (11.2%) were multiple case families, of which 66 had a parent with Type 1 diabetes at the time of diagnosis of the proband. The prevalence of Type 1 diabetes in the parents of these newly-diagnosed diabetic children was higher in fathers (5.7%) than in mothers (2.6%).


Diabetes | 2010

Enterovirus Infection and Progression From Islet Autoimmunity to Type 1 Diabetes: The Diabetes and Autoimmunity Study in the Young (DAISY)

Lars C. Stene; Sami Oikarinen; Heikki Hyöty; Katherine Barriga; Jill M. Norris; Georgeanna J. Klingensmith; John C. Hutton; Henry A. Erlich; George S. Eisenbarth; Marian Rewers

OBJECTIVE To investigate whether enterovirus infections predict progression to type 1 diabetes in genetically predisposed children repeatedly positive for islet autoantibodies. RESEARCH DESIGN AND METHODS Since 1993, the Diabetes and Autoimmunity Study in the Young (DAISY) has followed 2,365 genetically predisposed children for islet autoimmunity and type 1 diabetes. Venous blood and rectal swabs were collected every 3–6 months after seroconversion for islet autoantibodies (against GAD, insulin, or insulinoma-associated antigen-2 [IA-2]) until diagnosis of diabetes. Enteroviral RNA in serum or rectal swabs was detected using reverse transcriptase PCR with primers specific for the conserved 5′ noncoding region, detecting essentially all enterovirus serotypes. RESULTS Of 140 children who seroconverted to repeated positivity for islet autoantibodies at a median age of 4.0 years, 50 progressed to type 1 diabetes during a median follow-up of 4.2 years. The risk of progression to clinical type 1 diabetes in the sample interval following detection of enteroviral RNA in serum (three diabetes cases diagnosed among 17 intervals) was significantly increased compared with that in intervals following a negative serum enteroviral RNA test (33 cases diagnosed among 1,064 intervals; hazard ratio 7.02 [95% CI 1.95–25.3] after adjusting for number of autoantibodies). Results remained significant after adjustment for ZnT8-autoantibodies and after restriction to various subgroups. Enteroviral RNA in rectal swabs was not predictive of progression to type 1 diabetes. No evidence for viral persistence was found. CONCLUSIONS This novel observation suggests that progression from islet autoimmunity to type 1 diabetes may increase after an enterovirus infection characterized by the presence of viral RNA in blood.


Diabetes | 2011

Enterovirus RNA in Blood Is Linked to the Development of Type 1 Diabetes

Sami Oikarinen; Mika Martiskainen; Sisko Tauriainen; Heini Huhtala; Jorma Ilonen; Riitta Veijola; Olli Simell; Mikael Knip; Heikki Hyöty

OBJECTIVE To assess whether the detection of enterovirus RNA in blood predicts the development of clinical type 1 diabetes in a prospective birth cohort study. Further, to study the role of enteroviruses in both the initiation of the process and the progression to type 1 diabetes. RESEARCH DESIGN AND METHODS This was a nested case-control study where all case children (N = 38) have progressed to clinical type 1 diabetes. Nondiabetic control children (N = 140) were pairwise matched for sex, date of birth, hospital district, and HLA-DQ–conferred genetic susceptibility to type 1 diabetes. Serum samples, drawn at 3- to 12-month intervals, were screened for enterovirus RNA using RT-PCR. RESULTS Enterovirus RNA–positive samples were more frequent among the case subjects than among the control subjects. A total of 5.1% of the samples (17 of 333) in the case group were enterovirus RNA–positive compared with 1.9% of the samples (19 of 993) in the control group (P < 0.01). The strongest risk for type 1 diabetes was related to enterovirus RNA positivity during the 6-month period preceding the first autoantibody-positive sample (odds ratio 7.7 [95% CI 1.9–31.5]). This risk effect was stronger in boys than in girls. CONCLUSIONS The present study supports the hypothesis that enteroviruses play a role in the pathogenesis of type 1 diabetes, especially in the initiation of the β-cell damaging process. The enterovirus-associated risk for type 1 diabetes may be stronger in boys than in girls.


Diabetologia | 2013

The diagnosis of insulitis in human type 1 diabetes

Martha Campbell-Thompson; Mark A. Atkinson; Alexandra E. Butler; Nora M. Chapman; Gun Frisk; Roberto Gianani; Ben N. G. Giepmans; M. von Herrath; Heikki Hyöty; Thomas W. H. Kay; Olle Korsgren; Noel G. Morgan; Alvin C. Powers; Alberto Pugliese; Sarah J. Richardson; Patrick Rowe; Steven Tracy; P. A. In't Veld

To the Editor: During a workshop concerning the histopathological characteristics of insulitis in human type 1 diabetes (fifth annual meeting of the JDRF Network for Pancreatic Organ Donors with Diabetes [nPOD], 10 February 2013, Jacksonville, FL, USA), a consensus opinion was reached on the criteria necessary for the diagnosis of insulitis, and a definition of insulitis was agreed, as detailed in the text box. Workshop attendees included many leading researchers in the

Collaboration


Dive into the Heikki Hyöty's collaboration.

Top Co-Authors

Avatar

Mikael Knip

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olli Simell

Turku University Hospital

View shared research outputs
Top Co-Authors

Avatar

Riitta Veijola

Oulu University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jorma Toppari

Turku University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge