Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heikki Kuusanmäki is active.

Publication


Featured researches published by Heikki Kuusanmäki.


The New England Journal of Medicine | 2012

Somatic STAT3 mutations in large granular lymphocytic leukemia.

Hanna L M Koskela; Samuli Eldfors; Pekka Ellonen; Arjan J. van Adrichem; Heikki Kuusanmäki; Emma I. Andersson; Sonja Lagström; Michael J. Clemente; Thomas L. Olson; Sari E. Jalkanen; Muntasir Mamun Majumder; Henrikki Almusa; Henrik Edgren; Maija Lepistö; Pirkko Mattila; Kathryn M Guinta; Pirjo Koistinen; Taru Kuittinen; Kati Penttinen; Alun Parsons; Jonathan Knowles; Janna Saarela; Krister Wennerberg; Olli Kallioniemi; Kimmo Porkka; Thomas P. Loughran; Caroline Heckman; Jaroslaw P. Maciejewski; Satu Mustjoki

BACKGROUND T-cell large granular lymphocytic leukemia is a rare lymphoproliferative disorder characterized by the expansion of clonal CD3+CD8+ cytotoxic T lymphocytes (CTLs) and often associated with autoimmune disorders and immune-mediated cytopenias. METHODS We used next-generation exome sequencing to identify somatic mutations in CTLs from an index patient with large granular lymphocytic leukemia. Targeted resequencing was performed in a well-characterized cohort of 76 patients with this disorder, characterized by clonal T-cell-receptor rearrangements and increased numbers of large granular lymphocytes. RESULTS Mutations in the signal transducer and activator of transcription 3 gene (STAT3) were found in 31 of 77 patients (40%) with large granular lymphocytic leukemia. Among these 31 patients, recurrent mutational hot spots included Y640F in 13 (17%), D661V in 7 (9%), D661Y in 7 (9%), and N647I in 3 (4%). All mutations were located in exon 21, encoding the Src homology 2 (SH2) domain, which mediates the dimerization and activation of STAT protein. The amino acid changes resulted in a more hydrophobic protein surface and were associated with phosphorylation of STAT3 and its localization in the nucleus. In vitro functional studies showed that the Y640F and D661V mutations increased the transcriptional activity of STAT3. In the affected patients, downstream target genes of the STAT3 pathway (IFNGR2, BCL2L1, and JAK2) were up-regulated. Patients with STAT3 mutations presented more often with neutropenia and rheumatoid arthritis than did patients without these mutations. CONCLUSIONS The SH2 dimerization and activation domain of STAT3 is frequently mutated in patients with large granular lymphocytic leukemia; these findings suggest that aberrant STAT3 signaling underlies the pathogenesis of this disease. (Funded by the Academy of Finland and others.).


Blood | 2013

Discovery of somatic STAT5b mutations in large granular lymphocytic leukemia

Hanna Rajala; Samuli Eldfors; Heikki Kuusanmäki; Arjan J. van Adrichem; Thomas L. Olson; Sonja Lagström; Emma I. Andersson; Andres Jerez; Michael J. Clemente; Yiyi Yan; Dan Zhang; Andy Awwad; Pekka Ellonen; Olli Kallioniemi; Krister Wennerberg; Kimmo Porkka; Jaroslaw P. Maciejewski; Thomas P. Loughran; Caroline Heckman; Satu Mustjoki

Large granular lymphocytic (LGL) leukemia is characterized by clonal expansion of cytotoxic T cells or natural killer cells. Recently, somatic mutations in the signal transducer and activator of transcription 3 (STAT3) gene were discovered in 28% to 40% of LGL leukemia patients. By exome and transcriptome sequencing of 2 STAT3 mutation-negative LGL leukemia patients, we identified a recurrent, somatic missense mutation (Y665F) in the Src-like homology 2 domain of the STAT5b gene. Targeted amplicon sequencing of 211 LGL leukemia patients revealed 2 additional patients with STAT5b mutations (N642H), resulting in a total frequency of 2% (4 of 211) of STAT5b mutations across all patients. The Y665F and N642H mutant constructs increased the transcriptional activity of STAT5 and tyrosine (Y694) phosphorylation, which was also observed in patient samples. The clinical course of the disease in patients with the N642H mutation was aggressive and fatal, clearly different from typical LGL leukemia with a relatively favorable outcome. This is the first time somatic STAT5 mutations are discovered in human cancer and further emphasizes the role of STAT family genes in the pathogenesis of LGL leukemia.


Blood | 2015

Autoimmunity, hypogammaglobulinemia, lymphoproliferation, and mycobacterial disease in patients with activating mutations in STAT3

Haapaniemi Em; Meri Kaustio; Hanna Rajala; van Adrichem Aj; Leena Kainulainen; Glumoff; Rainer Döffinger; Heikki Kuusanmäki; Tarja Heiskanen-Kosma; Luca Trotta; Samuel C. Chiang; Petri Kulmala; Samuli Eldfors; Riku Katainen; Sanna Siitonen; Marja-Liisa Karjalainen-Lindsberg; Panu E. Kovanen; Otonkoski T; Kimmo Porkka; Heiskanen K; Arno Hänninen; Yenan T. Bryceson; Uusitalo-Seppälä R; Jani Saarela; Mikko Seppänen; Satu Mustjoki; Juha Kere

The signal transducer and activator of transcription (STAT) family of transcription factors orchestrate hematopoietic cell differentiation. Recently, mutations in STAT1, STAT5B, and STAT3 have been linked to development of immunodysregulation polyendocrinopathy enteropathy X-linked-like syndrome. Here, we immunologically characterized 3 patients with de novo activating mutations in the DNA binding or dimerization domains of STAT3 (p.K392R, p.M394T, and p.K658N, respectively). The patients displayed multiorgan autoimmunity, lymphoproliferation, and delayed-onset mycobacterial disease. Immunologically, we noted hypogammaglobulinemia with terminal B-cell maturation arrest, dendritic cell deficiency, peripheral eosinopenia, increased double-negative (CD4(-)CD8(-)) T cells, and decreased natural killer, T helper 17, and regulatory T-cell numbers. Notably, the patient harboring the K392R mutation developed T-cell large granular lymphocytic leukemia at age 14 years. Our results broaden the spectrum of phenotypes caused by activating STAT3 mutations, highlight the role of STAT3 in the development and differentiation of multiple immune cell lineages, and strengthen the link between the STAT family of transcription factors and autoimmunity.


Leukemia | 2014

Novel activating STAT5B mutations as putative drivers of T-cell acute lymphoblastic leukemia.

Mika Kontro; Heikki Kuusanmäki; Samuli Eldfors; T. Burmeister; Emma I. Andersson; Øystein Bruserud; Tim H. Brümmendorf; Henrik Edgren; Bjørn Tore Gjertsen; Maija Itälä-Remes; Sonja Lagström; Olli Lohi; Tuija Lundán; Jesus M. Lopez Marti; Muntasir Mamun Majumder; Alun Parsons; Tea Pemovska; Hanna Rajala; K Vettenranta; Olli Kallioniemi; Satu Mustjoki; K Porkka; Caroline Heckman

Novel activating STAT5B mutations as putative drivers of T-cell acute lymphoblastic leukemia


Leukemia | 2016

Activating somatic mutations outside the SH2-domain of STAT3 in LGL leukemia

Emma I. Andersson; Heikki Kuusanmäki; S Bortoluzzi; Sonja Lagström; Alun Parsons; Hanna Rajala; A van Adrichem; Samuli Eldfors; Thomas L. Olson; Michael J. Clemente; A Laasonen; Pekka Ellonen; Caroline Heckman; Thomas P. Loughran; Jaroslaw P. Maciejewski; Satu Mustjoki

Large granular lymphocyte (LGL) leukemia is a rare clonal disease characterized by a persistent increase in the number of CD8+ cytotoxic T cells or CD16/56+ natural killer (NK) cells.1 Patients are prone to recurrent infections and often suffer from severe cytopenias and autoimmune diseases that are thought to be mediated by cytotoxic LGL lymphocytes. LGL leukemia is believed to begin as an antigen-driven immune response followed by the constitutive activation of cytotoxic T lymphocytes or NK cells. Overall, studies have highlighted the dysregulation of different apoptotic pathways (for example, sphingolipid and FAS/FAS ligand) and the activation of survival signaling pathways (for example, PI3K/AKT and RAS).1


Blood Cancer Journal | 2015

Novel drug candidates for blast phase chronic myeloid leukemia from high-throughput drug sensitivity and resistance testing.

Paavo Pietarinen; Tea Pemovska; Mika Kontro; Bhagwan Yadav; J-P Mpindi; Emma I. Andersson; Muntasir Mamun Majumder; Heikki Kuusanmäki; Perttu Koskenvesa; Olli Kallioniemi; Krister Wennerberg; Caroline Heckman; Satu Mustjoki; K Porkka

Chronic myeloid leukemia in blast crisis (CML BC) remains a challenging disease to treat despite the introduction and advances in tyrosine kinase inhibitor (TKI) therapy. In this study we set out to identify novel candidate drugs for CML BC by using an unbiased high-throughput drug testing platform. We used three CML cell lines representing different types of CML blast phases (K562, EM-2 and MOLM-1) and primary leukemic cells from three CML BC patients. Profiling of drug responses was performed with a drug sensitivity and resistance testing platform comprising 295 anticancer agents. Overall, drug sensitivity scores and the drug response profiles of cell line and primary cell samples correlated well and were distinct from other types of leukemia samples. The cell lines were highly sensitive to TKIs and the clinically TKI-resistant patient samples were also resistant ex vivo. Comparison of cell line and patient sample data identified new candidate drugs for CML BC, such as vascular endothelial growth factor receptor and nicotinamide phosphoribosyltransferase inhibitors. Our results indicate that these drugs in particular warrant further evaluation by analyzing a larger set of primary patient samples. The results also pave way for designing rational combination therapies.


Oncotarget | 2017

Identification of precision treatment strategies for relapsed/ refractory multiple myeloma by functional drug sensitivity testing

Muntasir Mamun Majumder; Raija Silvennoinen; Pekka Anttila; David Tamborero; Samuli Eldfors; Bhagwan Yadav; Riikka Karjalainen; Heikki Kuusanmäki; Juha Lievonen; Alun Parsons; Minna Suvela; Esa Jantunen; Kimmo Porkka; Caroline Heckman

Novel agents have increased survival of multiple myeloma (MM) patients, however high-risk and relapsed/refractory patients remain challenging to treat and their outcome is poor. To identify novel therapies and aid treatment selection for MM, we assessed the ex vivo sensitivity of 50 MM patient samples to 308 approved and investigational drugs. With the results we i) classified patients based on their ex vivo drug response profile; ii) identified and matched potential drug candidates to recurrent cytogenetic alterations; and iii) correlated ex vivo drug sensitivity to patient outcome. Based on their drug sensitivity profiles, MM patients were stratified into four distinct subgroups with varied survival outcomes. Patients with progressive disease and poor survival clustered in a drug response group exhibiting high sensitivity to signal transduction inhibitors. Del(17p) positive samples were resistant to most drugs tested with the exception of histone deacetylase and BCL2 inhibitors. Samples positive for t(4;14) were highly sensitive to immunomodulatory drugs, proteasome inhibitors and several targeted drugs. Three patients treated based on the ex vivo results showed good response to the selected treatments. Our results demonstrate that ex vivo drug testing may potentially be applied to optimize treatment selection and achieve therapeutic benefit for relapsed/refractory MM.Novel agents have increased survival of multiple myeloma (MM) patients, however high-risk and relapsed/refractory patients remain challenging to treat and their outcome is poor. To identify novel therapies and aid treatment selection for MM, we assessed the ex vivo sensitivity of 50 MM patient samples to 308 approved and investigational drugs. With the results we i) classified patients based on their ex vivo drug response profile; ii) identified and matched potential drug candidates to recurrent cytogenetic alterations; and iii) correlated ex vivo drug sensitivity to patient outcome. Based on their drug sensitivity profiles, MM patients were stratified into four distinct subgroups with varied survival outcomes. Patients with progressive disease and poor survival clustered in a drug response group exhibiting high sensitivity to signal transduction inhibitors. Del(17p) positive samples were resistant to most drugs tested with the exception of histone deacetylase and BCL2 inhibitors. Samples positive for t(4;14) were highly sensitive to immunomodulatory drugs, proteasome inhibitors and several targeted drugs. Three patients treated based on the ex vivo results showed good response to the selected treatments. Our results demonstrate that ex vivo drug testing may potentially be applied to optimize treatment selection and achieve therapeutic benefit for relapsed/refractory MM.


Nature Communications | 2018

Aggressive natural killer-cell leukemia mutational landscape and drug profiling highlight JAK-STAT signaling as therapeutic target

Olli Dufva; Matti Kankainen; Tiina Kelkka; Nodoka Sekiguchi; Shady Adnan Awad; Samuli Eldfors; Bhagwan Yadav; Heikki Kuusanmäki; Disha Malani; Emma I. Andersson; Paavo Pietarinen; Leena Saikko; Panu E. Kovanen; Teija Ojala; Dean A. Lee; Thomas P. Loughran; Hideyuki Nakazawa; Junji Suzumiya; Ritsuro Suzuki; Young Hyeh Ko; Won Seog Kim; Shih-Sung Chuang; Tero Aittokallio; Wing C. Chan; Koichi Ohshima; Fumihiro Ishida; Satu Mustjoki

Aggressive natural killer-cell (NK-cell) leukemia (ANKL) is an extremely aggressive malignancy with dismal prognosis and lack of targeted therapies. Here, we elucidate the molecular pathogenesis of ANKL using a combination of genomic and drug sensitivity profiling. We study 14 ANKL patients using whole-exome sequencing (WES) and identify mutations in STAT3 (21%) and RAS-MAPK pathway genes (21%) as well as in DDX3X (29%) and epigenetic modifiers (50%). Additional alterations include JAK-STAT copy gains and tyrosine phosphatase mutations, which we show recurrent also in extranodal NK/T-cell lymphoma, nasal type (NKTCL) through integration of public genomic data. Drug sensitivity profiling further demonstrates the role of the JAK-STAT pathway in the pathogenesis of NK-cell malignancies, identifying NK cells to be highly sensitive to JAK and BCL2 inhibition compared to other hematopoietic cell lineages. Our results provide insight into ANKL genetics and a framework for application of targeted therapies in NK-cell malignancies.Aggressive natural killer-cell leukemia (ANKL) has few targeted therapies. Here ANKL patients are reported to harbor STAT3, RAS-MAPK pathway, DDX3X and epigenetic modifier mutations; and drug sensitivity profiling uncovers the importance of the JAK-STAT pathway, revealing potential ANKL therapeutic targets.


Blood Cancer Journal | 2017

In silico and preclinical drug screening identifies dasatinib as a targeted therapy for T-ALL

S Laukkanen; T Grönroos; P Pölönen; Heikki Kuusanmäki; J Mehtonen; J Cloos; Gert J. Ossenkoppele; Bjørn Tore Gjertsen; B Øystein; Caroline Heckman; M Heinäniemi; Mika Kontro; Olli Lohi

In silico and preclinical drug screening identifies dasatinib as a targeted therapy for T-ALL


Oncotarget | 2017

Differentiation status of primary chronic myeloid leukemia cells affects sensitivity to BCR-ABL1 inhibitors

Paavo Pietarinen; Christopher A. Eide; Pilar Ayuda-Durán; Swapnil Potdar; Heikki Kuusanmäki; Emma I. Andersson; John Patrick Mpindi; Tea Pemovska; Mika Kontro; Caroline Heckman; Olli Kallioniemi; Krister Wennerberg; Henrik Hjorth-Hansen; Brian J. Druker; Jorrit M. Enserink; Jeffrey W. Tyner; Satu Mustjoki; Kimmo Porkka

Tyrosine kinase inhibitors (TKI) are the mainstay treatment of BCR-ABL1-positive leukemia and virtually all patients with chronic myeloid leukemia in chronic phase (CP CML) respond to TKI therapy. However, there is limited information on the cellular mechanisms of response and particularly on the effect of cell differentiation state to TKI sensitivity in vivo and ex vivo/in vitro. We used multiple, independent high-throughput drug sensitivity and resistance testing platforms that collectively evaluated 295 oncology compounds to characterize ex vivo drug response profiles of primary cells freshly collected from newly-diagnosed patients with BCR-ABL1-positive leukemia (n = 40) and healthy controls (n = 12). In contrast to the highly TKI-sensitive cells from blast phase CML and Philadelphia chromosome-positive acute lymphoblastic leukemia, primary CP CML cells were insensitive to TKI therapy ex vivo. Despite maintaining potent BCR-ABL1 inhibitory activity, ex vivo viability of cells was unaffected by TKIs. These findings were validated in two independent patient cohorts and analysis platforms. All CP CML patients under study responded to TKI therapy in vivo. When CP CML cells were sorted based on CD34 expression, the CD34-positive progenitor cells showed good sensitivity to TKIs, whereas the more mature CD34-negative cells were markedly less sensitive. Thus in CP CML, TKIs predominantly target the progenitor cell population while the differentiated leukemic cells (mostly cells from granulocytic series) are insensitive to BCR-ABL1 inhibition. These findings have implications for drug discovery in CP CML and indicate a fundamental biological difference between CP CML and advanced forms of BCR-ABL1-positive leukemia.

Collaboration


Dive into the Heikki Kuusanmäki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mika Kontro

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar

Hanna Rajala

Helsinki University Central Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge