Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heikki Takala is active.

Publication


Featured researches published by Heikki Takala.


Nature | 2014

Signal amplification and transduction in phytochrome photosensors

Heikki Takala; Alexander Björling; Oskar Berntsson; Heli Lehtivuori; Stephan Niebling; Maria Hoernke; Irina Kosheleva; Robert Henning; Andreas Menzel; Janne A. Ihalainen; Sebastian Westenhoff

Sensory proteins must relay structural signals from the sensory site over large distances to regulatory output domains. Phytochromes are a major family of red-light-sensing kinases that control diverse cellular functions in plants, bacteria and fungi. Bacterial phytochromes consist of a photosensory core and a carboxy-terminal regulatory domain. Structures of photosensory cores are reported in the resting state and conformational responses to light activation have been proposed in the vicinity of the chromophore. However, the structure of the signalling state and the mechanism of downstream signal relay through the photosensory core remain elusive. Here we report crystal and solution structures of the resting and activated states of the photosensory core of the bacteriophytochrome from Deinococcus radiodurans. The structures show an open and closed form of the dimeric protein for the activated and resting states, respectively. This nanometre-scale rearrangement is controlled by refolding of an evolutionarily conserved ‘tongue’, which is in contact with the chromophore. The findings reveal an unusual mechanism in which atomic-scale conformational changes around the chromophore are first amplified into an ångstrom-scale distance change in the tongue, and further grow into a nanometre-scale conformational signal. The structural mechanism is a blueprint for understanding how phytochromes connect to the cellular signalling network.


Journal of Biological Chemistry | 2015

Light-induced Changes in the Dimerization Interface of Bacteriophytochromes *

Heikki Takala; Alexander Björling; Marko Linna; Sebastian Westenhoff; Janne A. Ihalainen

Background: Bacteriophytochromes are dimeric histidine kinases, but the functional role of their dimerization interfaces is unclear. Results: The phytochrome from Deinococcus radiodurans has two dimerization interfaces, which are critical for thermal back reversion and are altered by illumination. Conclusion: The dimerization interfaces cause strain in the structure. Significance: A functional role for the dimerization interfaces is proposed. Phytochromes are dimeric photoreceptor proteins that sense red light levels in plants, fungi, and bacteria. The proteins are structurally divided into a light-sensing photosensory module consisting of PAS, GAF, and PHY domains and a signaling output module, which in bacteriophytochromes typically is a histidine kinase (HK) domain. Existing structural data suggest that two dimerization interfaces exist between the GAF and HK domains, but their functional roles remain unclear. Using mutational, biochemical, and computational analyses of the Deinococcus radiodurans phytochrome, we demonstrate that two dimerization interfaces between sister GAF and HK domains stabilize the dimer with approximately equal contributions. The existence of both dimerization interfaces is critical for thermal reversion back to the resting state. We also find that a mutant in which the interactions between the GAF domains were removed monomerizes under red light. This implies that the interactions between the HK domains are significantly altered by photoconversion. The results suggest functional importance of the dimerization interfaces in bacteriophytochromes.


Science Advances | 2016

Structural photoactivation of a full-length bacterial phytochrome

Alexander Björling; Oskar Berntsson; Heli Lehtivuori; Heikki Takala; Ashley J. Hughes; Matthijs Panman; Maria Hoernke; Stephan Niebling; Léocadie Henry; Robert Henning; Irina Kosheleva; Vladimir Chukharev; Andreas Menzel; Gemma E. Newby; Dmitry Khakhulin; Michael Wulff; Janne A. Ihalainen; Sebastian Westenhoff

Time-resolved x-ray solution scattering reveals the conformational signaling mechanism of a bacterial phytochrome. Phytochromes are light sensor proteins found in plants, bacteria, and fungi. They function by converting a photon absorption event into a conformational signal that propagates from the chromophore through the entire protein. However, the structure of the photoactivated state and the conformational changes that lead to it are not known. We report time-resolved x-ray scattering of the full-length phytochrome from Deinococcus radiodurans on micro- and millisecond time scales. We identify a twist of the histidine kinase output domains with respect to the chromophore-binding domains as the dominant change between the photoactivated and resting states. The time-resolved data further show that the structural changes up to the microsecond time scales are small and localized in the chromophore-binding domains. The global structural change occurs within a few milliseconds, coinciding with the formation of the spectroscopic meta-Rc state. Our findings establish key elements of the signaling mechanism of full-length bacterial phytochromes.


Biochemistry | 2014

Connection between absorption properties and conformational changes in Deinococcus radiodurans phytochrome

Heikki Takala; Heli Lehtivuori; Henrik Hammarén; Vesa P. Hytönen; Janne A. Ihalainen

Phytochromes consist of several protein domains and a linear tetrapyrrole molecule, which interact as a red-light-sensing system. In this study, size-exclusion chromatography and light-scattering techniques are combined with UV-vis spectroscopy to investigate light-induced changes in dimeric Deinococcus radiodurans bacterial phytochrome (DrBphP) and its subdomains. The photosensory unit (DrCBD-PHY) shows an unusually stable Pfr state with minimal dark reversion, whereas the histidine kinase (HK) domain facilitates dark reversion to the resting state. Size-exclusion chromatography reveals that all phytochrome fragments remain as dimers in the illuminated state and dark state. Still, the elution profiles of all phytochrome fragments differ between the illuminated and dark states. The differences are observed reliably only when the whole UV-vis spectrum is characterized along the elution profile and show more Pfr-state characteristics at later elution volumes in DrBphP and DrCBD-PHY fragments. This implies that the PHY domain has an important role in amplifying and relaying light-induced conformational changes to the HK domain. In the illuminated state, the HK domain appears partially unfolded and prone to form oligomers. The oligomerization of DrBphP can be diminished by converting the molecule back to the resting Pr state by using far-red light.


Scientific Reports | 2016

The room temperature crystal structure of a bacterial phytochrome determined by serial femtosecond crystallography

Petra Edlund; Heikki Takala; Elin Claesson; Léocadie Henry; Robert Dods; Heli Lehtivuori; Matthijs Panman; Kanupriya Pande; T. G. White; Takanori Nakane; Oskar Berntsson; Emil Gustavsson; Petra Båth; Vaibhav Modi; Shatabdi Roy-Chowdhury; James Zook; Peter Berntsen; Suraj Pandey; Ishwor Poudyal; Jason Tenboer; Christopher Kupitz; Anton Barty; Petra Fromme; J. D. Koralek; Tomoyuki Tanaka; John C. Spence; Mengning Liang; Mark S. Hunter; Sébastien Boutet; Eriko Nango

Phytochromes are a family of photoreceptors that control light responses of plants, fungi and bacteria. A sequence of structural changes, which is not yet fully understood, leads to activation of an output domain. Time-resolved serial femtosecond crystallography (SFX) can potentially shine light on these conformational changes. Here we report the room temperature crystal structure of the chromophore-binding domains of the Deinococcus radiodurans phytochrome at 2.1 Å resolution. The structure was obtained by serial femtosecond X-ray crystallography from microcrystals at an X-ray free electron laser. We find overall good agreement compared to a crystal structure at 1.35 Å resolution derived from conventional crystallography at cryogenic temperatures, which we also report here. The thioether linkage between chromophore and protein is subject to positional ambiguity at the synchrotron, but is fully resolved with SFX. The study paves the way for time-resolved structural investigations of the phytochrome photocycle with time-resolved SFX.


Journal of Physical Chemistry Letters | 2015

Ubiquitous Structural Signaling in Bacterial Phytochromes

Alexander Björling; Oskar Berntsson; Heikki Takala; Kevin D. Gallagher; Hardik Patel; Emil Gustavsson; Rachael St. Peter; Phu Duong; Angela Nugent; Fan Zhang; Peter Berntsen; Roberto Appio; Ivan Rajkovic; Heli Lehtivuori; Matthijs Panman; Maria Hoernke; Stephan Niebling; Tilman Lamparter; Emina A. Stojković; Janne A. Ihalainen; Sebastian Westenhoff

The phytochrome family of light-switchable proteins has long been studied by biochemical, spectroscopic and crystallographic means, while a direct probe for global conformational signal propagation has been lacking. Using solution X-ray scattering, we find that the photosensory cores of several bacterial phytochromes undergo similar large-scale structural changes upon red-light excitation. The data establish that phytochromes with ordinary and inverted photocycles share a structural signaling mechanism and that a particular conserved histidine, previously proposed to be involved in signal propagation, in fact tunes photoresponse.


Nature Communications | 2017

Sequential conformational transitions and α-helical supercoiling regulate a sensor histidine kinase

Oskar Berntsson; Ralph P. Diensthuber; Matthijs Panman; Alexander Björling; Emil Gustavsson; Maria Hoernke; Ashley J. Hughes; Léocadie Henry; Stephan Niebling; Heikki Takala; Janne A. Ihalainen; Gemma E. Newby; Silke Kerruth; Joachim Heberle; Marianne Liebi; Andreas Menzel; Robert Henning; Irina Kosheleva; Andreas Möglich; Sebastian Westenhoff

Sensor histidine kinases are central to sensing in bacteria and in plants. They usually contain sensor, linker, and kinase modules and the structure of many of these components is known. However, it is unclear how the kinase module is structurally regulated. Here, we use nano- to millisecond time-resolved X-ray scattering to visualize the solution structural changes that occur when the light-sensitive model histidine kinase YF1 is activated by blue light. We find that the coiled coil linker and the attached histidine kinase domains undergo a left handed rotation within microseconds. In a much slower second step, the kinase domains rearrange internally. This structural mechanism presents a template for signal transduction in sensor histidine kinases.Sensor histidine kinases (SHK) consist of sensor, linker and kinase modules and different models for SHK signal transduction have been proposed. Here the authors present nano- to millisecond time-resolved X-ray scattering measurements, which reveal a structural mechanism for kinase domain activation in SHK.


Structural Dynamics | 2016

Light-induced structural changes in a monomeric bacteriophytochrome

Heikki Takala; Stephan Niebling; Oskar Berntsson; Alexander Björling; Heli Lehtivuori; Heikki Häkkänen; Matthijs Panman; Emil Gustavsson; Maria Hoernke; Gemma E. Newby; Federico Zontone; Michael Wulff; Andreas Menzel; Janne A. Ihalainen; Sebastian Westenhoff

Phytochromes sense red light in plants and various microorganism. Light absorption causes structural changes within the protein, which alter its biochemical activity. Bacterial phytochromes are dimeric proteins, but the functional relevance of this arrangement remains unclear. Here, we use time-resolved X-ray scattering to reveal the solution structural change of a monomeric variant of the photosensory core module of the phytochrome from Deinococcus radiodurans. The data reveal two motions, a bend and a twist of the PHY domain with respect to the chromophore-binding domains. Infrared spectroscopy shows the refolding of the PHY tongue. We conclude that a monomer of the phytochrome photosensory core is sufficient to perform the light-induced structural changes. This implies that allosteric cooperation with the other monomer is not needed for structural activation. The dimeric arrangement may instead be intrinsic to the biochemical output domains of bacterial phytochromes.


Frontiers in Molecular Biosciences | 2015

Fast Photochemistry of Prototypical Phytochromes—A Species vs. Subunit Specific Comparison

Janne A. Ihalainen; Heikki Takala; Heli Lehtivuori

Phytochromes are multi-domain red light photosensor proteins, which convert red light photons to biological activity utilizing the multitude of structural and chemical reactions. The steady increase in structural information obtained from various bacteriophytochromes has increased understanding about the functional mechanism of the photochemical processes of the phytochromes. Furthermore, a number of spectroscopic studies have revealed kinetic information about the light-induced reactions. The spectroscopic changes are, however, challenging to connect with the structural changes of the chromophore and the protein environment, as the excited state properties of the chromophores are very sensitive to the small structural and chemical changes of their environment. In this article, we concentrate on the results of ultra-fast spectroscopic experiments which reveal information about the important initial steps of the photoreactions of the phytochromes. We survey the excited state properties obtained during the last few decades. The differences in kinetics between different research laboratories are traditionally related to the differences of the studied species. However, we notice that the variation in the excited state properties depends on the subunit composition of the protein as well. This observation illustrates a feedback mechanism from the other domains to the chromophore. We propose that two feedback routes exist in phytochromes between the chromophore and the remotely located effector domain. The well-known connection between the subunits is the so-called tongue region, which changes its secondary structure while changing the light-activated state of the system. The other feedback route which we suggest is less obvious, it is made up of several water molecules ranging from the dimer interface to the vicinity of the chromophore, allowing even proton transfer reactions nearby the chromophore.


Journal of Biological Chemistry | 2018

On the (un)coupling of the chromophore, tongue interactions and overall conformation in a bacterial phytochrome.

Heikki Takala; Heli Lehtivuori; Oskar Berntsson; Ashley J. Hughes; Rahul Nanekar; Stephan Niebling; Matthijs Panman; Léocadie Henry; Andreas Menzel; Sebastian Westenhoff; Janne A. Ihalainen

Collaboration


Dive into the Heikki Takala's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heli Lehtivuori

University of Jyväskylä

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Hoernke

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Andreas Menzel

Technical University of Dortmund

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge