Heiko Düssmann
Royal College of Surgeons in Ireland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Heiko Düssmann.
The EMBO Journal | 2006
Markus Rehm; Heinrich Huber; Heiko Düssmann; Jochen H. M. Prehn
Activation of effector caspases is a final step during apoptosis. Single‐cell imaging studies have demonstrated that this process may occur as a rapid, all‐or‐none response, triggering a complete substrate cleavage within 15 min. Based on biochemical data from HeLa cells, we have developed a computational model of apoptosome‐dependent caspase activation that was sufficient to remodel the rapid kinetics of effector caspase activation observed in vivo. Sensitivity analyses predicted a critical role for caspase‐3‐dependent feedback signalling and the X‐linked‐inhibitor‐of‐apoptosis‐protein (XIAP), but a less prominent role for the XIAP antagonist Smac. Single‐cell experiments employing a caspase fluorescence resonance energy transfer substrate verified these model predictions qualitatively and quantitatively. XIAP was predicted to control this all‐or‐none response, with concentrations as high as 0.15 μM enabling, but concentrations >0.30 μM significantly blocking substrate cleavage. Overexpression of XIAP within these threshold concentrations produced cells showing slow effector caspase activation and submaximal substrate cleavage. Our study supports the hypothesis that high levels of XIAP control caspase activation and substrate cleavage, and may promote apoptosis resistance and sublethal caspase activation in vivo.
The Journal of Neuroscience | 2007
Manus W. Ward; Heinrich J. Huber; Petronela Weisová; Heiko Düssmann; David G. Nicholls; Jochen H. M. Prehn
A failure of mitochondrial bioenergetics has been shown to be closely associated with the onset of apoptotic and necrotic neuronal injury. Here, we developed an automated computational model that interprets the single-cell fluorescence for tetramethylrhodamine methyl ester (TMRM) as a consequence of changes in either ΔΨm or ΔΨp, thus allowing for the characterization of responses for populations of single cells and subsequent statistical analysis. Necrotic injury triggered by prolonged glutamate excitation resulted in a rapid monophasic or biphasic loss of ΔΨm that was closely associated with a loss of ΔΨp and a rapid decrease in neuronal NADPH and ATP levels. Delayed apoptotic injury, induced by transient glutamate excitation, resulted in a small, reversible decrease in TMRM fluorescence, followed by a sustained hyperpolarization of ΔΨm as confirmed using the ΔΨp-sensitive anionic probe DiBAC2(3). This hyperpolarization of ΔΨm was closely associated with a significant increase in neuronal glucose uptake, NADPH availability, and ATP levels. Statistical analysis of the changes in ΔΨm or ΔΨp at a single-cell level revealed two major correlations; those neurons displaying a more pronounced depolarization of ΔΨp during the initial phase of glutamate excitation entered apoptosis more rapidly, and neurons that displayed a more pronounced hyperpolarization of ΔΨm after glutamate excitation survived longer. Indeed, those neurons that were tolerant to transient glutamate excitation (18%) showed the most significant increases in ΔΨm. Our results indicate that a hyperpolarization of ΔΨm is associated with increased glucose uptake, NADPH availability, and survival responses during excitotoxic injury.
Cell Death & Differentiation | 2009
Markus Rehm; Heinrich J. Huber; Christian T. Hellwig; Sergio Anguissola; Heiko Düssmann; Jochen H. M. Prehn
Individual cells within a population undergo apoptosis at distinct, apparently random time points. By analyzing cellular mitotic history, we identified that sibling HeLa cell pairs, in contrast to random cell pairs, underwent apoptosis synchronously. This allowed us to use high-speed cellular imaging to investigate mitochondrial outer membrane permeabilization (MOMP), a highly coordinated, rapid process during apoptosis, at a temporal resolution approximately 100 times higher than possible previously. We obtained new functional and mechanistic insight into the process of MOMP: We were able to determine the kinetics of pore formation in the outer mitochondrial membrane from the initiation phase of cytochrome-c-GFP redistribution, and showed differential pore formation kinetics in response to intrinsic or extrinsic apoptotic stimuli (staurosporine, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)). We also detected that the onset of mitochondrial permeabilization frequently proceeded as a wave through the cytosol, and that the frequency of wave occurrence in response to TRAIL was reduced by inhibition of protein kinase CK2. Computational analysis by a partial differential equation model suggested that the spread of permeabilization signals could sufficiently be explained by diffusion–adsorption velocities of locally generated permeabilization inducers. Taken together, our study yielded the first comprehensive analysis of clonal cell-to-cell variability in apoptosis execution and allowed to visualize and explain the dynamics of MOMP in cells undergoing apoptosis.
Cell Death & Differentiation | 2010
Heiko Düssmann; Markus Rehm; Caoimhín G. Concannon; Sergio Anguissola; Maximilian L. Würstle; S Kacmar; P Völler; Heinrich J. Huber; Jochen H. M. Prehn
Mitochondrial outer membrane permeabilisation (MOMP) during apoptosis is triggered by the activation and oligomerisation of Bax and Bak, but a quantification of these processes in individual cells has not yet been performed. Single-cell imaging of Bax translocation and oligomerisation in Bax-deficient DU-145 cells expressing CFP-Bax and YFP-Bax revealed that both processes started only minutes before or concomitantly with MOMP, with the majority of Bax translocation and oligomerisation occurring downstream of MOMP. Quantification of YFP-Bax concentrations at mitochondria revealed an increase of only 1.8±1.5% at MOMP onset. This was increased to 11.2±3.6% in bak-silenced cells. These data suggested that Bax activation exceeded by far the quantities required for MOMP induction, and that minimal Bax or Bak activation may be sufficient to trigger rapid pore formation. In a cellular automaton modelling approach that incorporated the quantities and movement probabilities of Bax and its inhibitors, activators and enablers in the mitochondrial membrane, we could re-model rapid pore formation kinetics at submaximal Bax activation.
Cell Death & Differentiation | 2011
Maike A. Laussmann; Egle Passante; Heiko Düssmann; Judith A. Rauen; Maximilian L. Würstle; Maria Eugenia Delgado; Marc Devocelle; Jochen H. M. Prehn; Markus Rehm
Antiapoptotic Bcl-2 family proteins are often highly expressed in chemotherapy-resistant cancers and impair mitochondrial outer membrane permeabilisation (MOMP), an important requirement for caspase activation via the intrinsic apoptosis pathway. Interestingly, although Bcl-2 overexpression in HeLa cervical cancer cells abrogated caspase processing in response to intrinsic apoptosis induction by staurosporine, tunicamycin or etoposide, residual caspase processing was observed following proteasome inhibition by bortezomib ([(1R)-3-methyl-1-({(2S)-3-phenyl-2-[(pyrazin-2-ylcarbonyl)amino]propanoyl}amino)butyl]boronic acid), epoxomicin (N-acetyl-N-methyl-lisoleucyl-L-isoleucyl-N-[(1S)-3-methyl-1-[[(2R)-2-methyloxiranyl]carbonyl]butyl]-L-threoninamide) or MG-132 (N-(benzyloxycarbonyl)leucinylleucinylleucinal). Similar responses were found in Bcl-2-overexpressing H460 NSCLC cells and Bax/Bak-deficient mouse embyronic fibroblasts. Mild caspase processing resulted in low DEVDase activities, which were MOMP independent and persisted for long periods without evoking immediate cell death. Surprisingly, depletion of caspase-3 and experiments in caspase-7-depleted MCF-7-Bcl-2 cells indicated that the DEVDase activity did not originate from effector caspases. Instead, Fas-associated death domain (FADD)-dependent caspase-8 activation was the major contributor to the slow, incomplete substrate cleavage. Caspase-8 activation was independent of death ligands, but required the induction of autophagy and the presence of Atg5. Depletion of XIAP or addition of XIAP-antagonising peptides resulted in a switch towards efficient apoptosis execution, suggesting that the requirement for MOMP was bypassed by activating the caspase-8/caspase-3 axis. Combination treatments of proteasome inhibitors and XIAP antagonists therefore represent a promising strategy to eliminate highly resistant cancer cells, which overexpress antiapoptotic Bcl-2 family members.
The Journal of Neuroscience | 2012
Beatrice D'Orsi; Helena P. Bonner; Liam P. Tuffy; Heiko Düssmann; Ina Woods; Manus W. Ward; Jochen H. M. Prehn
Excitotoxicity resulting from excessive Ca2+ influx through glutamate receptors contributes to neuronal injury after stroke, trauma, and seizures. Increased cytosolic Ca2+ levels activate a family of calcium-dependent proteases with papain-like activity, the calpains. Here we investigated the role of calpain activation during NMDA-induced excitotoxic injury in embryonic (E16–E18) murine cortical neurons that (1) underwent excitotoxic necrosis, characterized by immediate deregulation of Ca2+ homeostasis, a persistent depolarization of mitochondrial membrane potential (Δψm), and insensitivity to bax-gene deletion, (2) underwent excitotoxic apoptosis, characterized by recovery of NMDA-induced cytosolic Ca2+ increases, sensitivity to bax gene deletion, and delayed Δψm depolarization and Ca2+ deregulation, or (3) that were tolerant to excitotoxic injury. Interestingly, treatment with the calpain inhibitor calpeptin, overexpression of the endogenous calpain inhibitor calpastatin, or gene silencing of calpain protected neurons against excitotoxic apoptosis but did not influence excitotoxic necrosis. Calpeptin failed to exert a protective effect in bax-deficient neurons but protected bid-deficient neurons similarly to wild-type cells. To identify when calpains became activated during excitotoxic apoptosis, we monitored calpain activation dynamics by time-lapse fluorescence microscopy using a calpain-sensitive Förster resonance energy transfer probe. We observed a delayed calpain activation that occurred downstream of mitochondrial engagement and directly preceded neuronal death. In contrast, we could not detect significant calpain activity during excitotoxic necrosis or in neurons that were tolerant to excitotoxic injury. Oxygen/glucose deprivation-induced injury in organotypic hippocampal slice cultures confirmed that calpains were specifically activated during bax-dependent apoptosis and in this setting function as downstream cell-death executioners.
The Journal of Neuroscience | 2012
Alexandra Skorupa; Matthew A. King; Isabela M. Aparicio; Heiko Düssmann; Karen S. Coughlan; Bridget Breen; Dairin Kieran; Caoimhín G. Concannon; Philippe Marin; Jochen H. M. Prehn
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disorder affecting motoneurons. Mutations in angiogenin, encoding a member of the pancreatic RNase A superfamily, segregate with ALS. We previously demonstrated that angiogenin administration shows promise as a neuroprotective therapeutic in studies using transgenic ALS mice and primary motoneuron cultures. Its mechanism of action and target cells in the spinal cord, however, are largely unknown. Using mixed motoneuron cultures, motoneuron-like NSC34 cells, and primary astroglia cultures as model systems, we here demonstrate that angiogenin is a neuronally secreted factor that is endocytosed by astroglia and mediates neuroprotection in paracrine. We show that wild-type angiogenin acts unidirectionally to induce RNA cleavage in astroglia, while the ALS-associated K40I mutant is also secreted and endocytosed, but fails to induce RNA cleavage. Angiogenin uptake into astroglia requires heparan sulfate proteoglycans, and engages clathrin-mediated endocytosis. We show that this uptake mechanism exists for mouse and human angiogenin, and delivers a functional RNase output. Moreover, we identify syndecan 4 as the angiogenin receptor mediating the selective uptake of angiogenin into astroglia. Our data provide new insights into the paracrine activities of angiogenin in the nervous system, and further highlight the critical role of non-neuronal cells in the pathogenesis of ALS.
Journal of Biological Chemistry | 2008
Christian T. Hellwig; Barbara Köhler; Anna-Kaisa Lehtivarjo; Heiko Düssmann; Michael Courtney; Jochen H. M. Prehn; Markus Rehm
Employing fluorescence resonance energy transfer (FRET) imaging, we previously demonstrated that effector caspase activation is often an all-or-none response independent of drug choice or dose administered. We here investigated the signaling dynamics during apoptosis initiation via the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor pathway to investigate how variability in drug exposure can be translated into largely kinetically invariant cell death execution pathways. FRET-based microscopy demonstrated dose-dependent responses of caspase-8 activation and activity within individual living HeLa cells. Caspase-8 on average was activated 45-600 min after TRAIL/cycloheximide addition. Caspase-8-like activities persisted for 15-60 min before eventually inducing mitochondrial outer membrane permeabilization. Independent of the TRAIL concentrations used or the resulting caspase-8-like activities, mitochondrial outer membrane permeabilization was induced when 10% of the FRET substrate was cleaved. In contrast, in Bid-depleted cells, caspase-8-like activity persisted for hours without causing immediate cell death. Our findings provide detailed insight into the intracellular signaling kinetics during apoptosis initiation and describe a threshold mechanism controlling the induction of apoptosis execution.
Molecular Systems Biology | 2014
Heinrich J. Huber; Heiko Düssmann; Seán M Kilbride; Markus Rehm; Jochen H. M. Prehn
Many anticancer drugs activate caspases via the mitochondrial apoptosis pathway. Activation of this pathway triggers a concomitant bioenergetic crisis caused by the release of cytochrome‐c (cyt‐c). Cancer cells are able to evade these processes by altering metabolic and caspase activation pathways. In this study, we provide the first integrated system study of mitochondrial bioenergetics and apoptosis signalling and examine the role of mitochondrial cyt‐c release in these events. In accordance with single‐cell experiments, our model showed that loss of cyt‐c decreased mitochondrial respiration by 95% and depolarised mitochondrial membrane potential ΔΨm from −142 to −88 mV, with active caspase‐3 potentiating this decrease. ATP synthase was reversed under such conditions, consuming ATP and stabilising ΔΨm. However, the direction and level of ATP synthase activity showed significant heterogeneity in individual cancer cells, which the model explained by variations in (i) accessible cyt‐c after release and (ii) the cells glycolytic capacity. Our results provide a quantitative and mechanistic explanation for the protective role of enhanced glucose utilisation for cancer cells to avert the otherwise lethal bioenergetic crisis associated with apoptosis initiation.
Cell Death & Differentiation | 2015
F Walter; J Schmid; Heiko Düssmann; Caoimhín G. Concannon; Jochen H. M. Prehn
An accumulation of misfolded proteins in the endoplasmic reticulum (ER) triggers the unfolded protein response (UPR) mediated via the activation of three transmembrane proteins IRE1, PERK and ATF6. Signalling through these proteins is aimed at enhancing the ER folding capacity and reducing the folding load. If these processes fail to re-establish protein homeostasis within the ER, then cell death prevails via apoptosis. How the shift from pro-survival to pro-apoptotic signalling is regulated remains unclear with both IRE1 and PERK signalling associated with pro-survival as well as pro-apoptotic signalling. To investigate the temporal activation of IRE1 and PERK in live cells and their relationship to cellular fate, we devised single cell reporters for both ER stress signalling branches. SH-SY5Y neural cells stably expressing these fluorescent protein reporter constructs to monitor IRE1-splicing activity and PERK-mediated ATF4-translation were imaged using single cell and high content time lapse live cell microscopy. We could correlate an early onset and attenuation of XBP1 splicing in the IRE1-reporter cells as cytoprotective. Indeed, silencing of IRE1 expression using shRNA inhibited splicing of XBP1 resulting in an early onset of cell death. In contrast, in the PERK-reporter cells, we observed that a slow rate of ATF4-translation and late re-initiation of general translation coincided with cells which were resistant to ER stress-induced cell death. Interestingly, whereas silencing of PERK did not affect overall levels of cell death in response to ER stress, it did increase sensitivity to ER stressors at early time points following treatment. Our results suggest that apoptosis activation in response to ER stress is not caused by a preferential activation of a single UPR branch, or by a switch from one branch to the other. Rather, our data indicated that the relative timing of IRE1 and PERK signalling determines the shift from cell survival to apoptosis.