Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heiko Enderling is active.

Publication


Featured researches published by Heiko Enderling.


Cancer Research | 2009

Paradoxical Dependencies of Tumor Dormancy and Progression on Basic Cell Kinetics

Heiko Enderling; Alexander R. A. Anderson; Mark A. J. Chaplain; Afshin Beheshti; Lynn Hlatky; Philip Hahnfeldt

Even after a tumor is established, it can early on enter a state of dormancy marked by balanced cell proliferation and cell death. Disturbances to this equilibrium may affect cancer risk, as they may cause the eventual lifetime clinical presentation of a tumor that might otherwise have remained asymptomatic. Previously, we showed that cell death, proliferation, and migration can play a role in shifting this dynamic, making the understanding of their combined influence on tumor development essential. We developed an individual cell-based computer model of the interaction of cancer stem cells and their nonstem progeny to study early tumor dynamics. Simulations of tumor growth show that three basic components of tumor growth--cell proliferation, migration, and death--combine in unexpected ways to control tumor progression and, thus, clinical cancer risk. We show that increased proliferation capacity in nonstem tumor cells and limited cell migration overall lead to space constraints that inhibit proliferation and tumor growth. By contrast, increasing the rate of cell death produces the expected tumor size reduction in the short term, but results ultimately in paradoxical accelerated long-term growth owing to the liberation of cancer stem cells and formation of self-metastases.


British Journal of Cancer | 2009

Migration rules: tumours are conglomerates of self-metastases

Heiko Enderling; Lynn Hlatky; Philip Hahnfeldt

Tumours are heterogeneous populations composed of different cells types: stem cells with the capacity for self-renewal and more differentiated cells lacking such ability. The overall growth behaviour of a developing neoplasm is determined largely by the combined kinetic interactions of these cells. By tracking the fate of individual cancer cells using agent-based methods in silico, we apply basic rules for cell proliferation, migration and cell death to show how these kinetic parameters interact to control, and perhaps dictate defining spatial and temporal tumour growth dynamics in tumour development. When the migration rate is small, a single cancer stem cell can only generate a small, self-limited clone because of the finite life span of progeny and spatial constraints. By contrast, a high migration rate can break this equilibrium, seeding new clones at sites outside the expanse of older clones. In this manner, the tumour continually ‘self-metastasises’. Counterintuitively, when the proliferation capacity is low and the rate of cell death is high, tumour growth is accelerated because of the freeing up of space for self-metastatic expansion. Changes to proliferation and cell death that increase the rate at which cells migrate benefit tumour growth as a whole. The dominating influence of migration on tumour growth leads to unexpected dependencies of tumour growth on proliferation capacity and cell death. These dependencies stand to inform standard therapeutic approaches, which anticipate a positive response to cell killing and mitotic arrest.


Cancer Research | 2013

Acute and fractionated irradiation differentially modulate glioma stem cell division kinetics

Xiang Gao; McDonald Jt; Lynn Hlatky; Heiko Enderling

Glioblastoma multiforme (GBM) is one of the most aggressive human malignancies with a poor patient prognosis. Ionizing radiation either alone or adjuvant after surgery is part of standard treatment for GBM but remains primarily noncurative. The mechanisms underlying tumor radioresistance are manifold and, in part, accredited to a special subpopulation of tumorigenic cells. The so-called glioma stem cells (GSC) are bestowed with the exclusive ability to self-renew and repopulate the tumor and have been reported to be less sensitive to radiation-induced damage through preferential activation of DNA damage checkpoint responses and increased capacity for DNA damage repair. During each fraction of radiation, non-stem cancer cells (CC) die and GSCs become enriched and potentially increase in number, which may lead to accelerated repopulation. We propose a cellular Potts model that simulates the kinetics of GSCs and CCs in glioblastoma growth and radiation response. We parameterize and validate this model with experimental data of the U87-MG human glioblastoma cell line. Simulations are conducted to estimate GSC symmetric and asymmetric division rates and explore potential mechanisms for increased GSC fractions after irradiation. Simulations reveal that in addition to their higher radioresistance, a shift from asymmetric to symmetric division or a fast cycle of GSCs following fractionated radiation treatment is required to yield results that match experimental observations. We hypothesize a constitutive activation of stem cell division kinetics signaling pathways during fractionated treatment, which contributes to the frequently observed accelerated repopulation after therapeutic irradiation.


Biophysical Journal | 2008

Dependence of Invadopodia Function on Collagen Fiber Spacing and Cross-Linking: Computational Modeling and Experimental Evidence

Heiko Enderling; Nelson R. Alexander; Emily S. Clark; Kevin M. Branch; Lourdes Estrada; Cornelia Crooke; Jerome Jourquin; Nichole A. Lobdell; Muhammad H. Zaman; Scott A. Guelcher; Alexander R. A. Anderson; Alissa M. Weaver

Invadopodia are subcellular organelles thought to be critical for extracellular matrix (ECM) degradation and the movement of cells through tissues. Here we examine invadopodia generation, turnover, and function in relation to two structural aspects of the ECM substrates they degrade: cross-linking and fiber density. We set up a cellular automaton computational model that simulates ECM penetration and degradation by invadopodia. Experiments with denatured collagen (gelatin) were used to calibrate the model and demonstrate the inhibitory effect of ECM cross-linking on invadopodia degradation and penetration. Incorporation of dynamic invadopodia behavior into the model amplified the effect of cross-linking on ECM degradation, and was used to model feedback from the ECM. When the model was parameterized with spatial fibrillar dimensions that closely matched the organization, in real life, of native ECM collagen into triple-helical monomers, microfibrils, and macrofibrils, little or no inhibition of invadopodia penetration was observed in simulations of sparse collagen gels, no matter how high the degree of cross-linking. Experimental validation, using live-cell imaging of invadopodia in cells plated on cross-linked gelatin, was consistent with simulations in which ECM cross-linking led to higher rates of both invadopodia retraction and formation. Analyses of invadopodia function from cells plated on cross-linked gelatin and collagen gels under standard concentrations were consistent with simulation results in which sparse collagen gels provided a weak barrier to invadopodia. These results suggest that the organization of collagen, as it may occur in stroma or in vitro collagen gels, forms gaps large enough so as to have little impact on invadopodia penetration/degradation. By contrast, dense ECM, such as gelatin or possibly basement membranes, is an effective obstacle to invadopodia penetration and degradation, particularly when cross-linked. These results provide a novel framework for further studies on ECM structure and modifications that affect invadopodia and tissue invasion by cells.


Bulletin of Mathematical Biology | 2013

The Tumor Growth Paradox and Immune System-Mediated Selection for Cancer Stem Cells

Thomas Hillen; Heiko Enderling; Philip Hahnfeldt

Cancer stem cells (CSCs) drive tumor progression, metastases, treatment resistance, and recurrence. Understanding CSC kinetics and interaction with their nonstem counterparts (called tumor cells, TCs) is still sparse, and theoretical models may help elucidate their role in cancer progression. Here, we develop a mathematical model of a heterogeneous population of CSCs and TCs to investigate the proposed “tumor growth paradox”—accelerated tumor growth with increased cell death as, for example, can result from the immune response or from cytotoxic treatments. We show that if TCs compete with CSCs for space and resources they can prevent CSC division and drive tumors into dormancy. Conversely, if this competition is reduced by death of TCs, the result is a liberation of CSCs and their renewed proliferation, which ultimately results in larger tumor growth. Here, we present an analytical proof for this tumor growth paradox. We show how numerical results from the model also further our understanding of how the fraction of cancer stem cells in a solid tumor evolves. Using the immune system as an example, we show that induction of cell death can lead to selection of cancer stem cells from a minor subpopulation to become the dominant and asymptotically the entire cell type in tumors.


Progress in Biophysics & Molecular Biology | 2011

Cancer stem cells in solid tumors: Is ‘evading apoptosis’ a hallmark of cancer?

Heiko Enderling; Philip Hahnfeldt

Conventional wisdom has long held that once a cancer cell has developed it will inevitably progress to clinical disease. Updating this paradigm, it has more recently become apparent that the tumor interacts with its microenvironment and that some environmental bottlenecks, such as the angiogenic switch, must be overcome for the tumor to progress. In parallel, attraction has been drawn to the concept that there is a minority population of cells - the cancer stem cells - bestowed with the exclusive ability to self-renew and regenerate the tumor. With therapeutic targeting issues at stake, much attention has shifted to the identification of cancer stem cells, the thinking being that the remaining non-stem population, already fated to die, will play a negligible role in tumor development. In fact, the newly appreciated importance of intercellular interactions in cancer development also extends in a unique and unexpected way to interactions between the stem and non-stem compartments of the tumor. Here we discuss recent findings drawn from a hybrid mathematical-cellular automaton model that simulates growth of a heterogeneous solid tumor comprised of cancer stem cells and non-stem cancer cells. The model shows how the introduction of cell fate heterogeneity paradoxically influences the tumor growth dynamic in response to apoptosis, to reveal yet another bottleneck to tumor progression potentially exploitable for disease control.


Current Pharmaceutical Design | 2014

Mathematical Modeling of Tumor Growth and Treatment

Heiko Enderling; Mark A. J. Chaplain

Using mathematical models to simulate dynamic biological processes has a long history. Over the past couple of decades or so, quantitative approaches have also made their way into cancer research. An increasing number of mathematical, physical, computational and engineering techniques have been applied to various aspects of tumor growth, with the ultimate goal of understanding the response of the cancer population to clinical intervention. So-called in silico trials that predict patient-specific response to various dose schedules or treatment combinations and sequencing are on the way to becoming an invaluable tool to optimize patient care. Herein we describe fundamentals of mathematical modeling of tumor growth and tumor-host interactions, and summarize some of the seminal and most prominent approaches.


Frontiers in Oncology | 2013

Cancer Stem Cells: A Minor Cancer Subpopulation that Redefines Global Cancer Features.

Heiko Enderling; Lynn Hlatky; Philip Hahnfeldt

In recent years cancer stem cells (CSCs) have been hypothesized to comprise only a minor subpopulation in solid tumors that drives tumor initiation, progression, and metastasis; the so-called “cancer stem cell hypothesis.” While a seemingly trivial statement about numbers, much is put at stake. If true, the conclusions of many studies of cancer cell populations could be challenged, as the bulk assay methods upon which they depend have, by, and large, taken for granted the notion that a “typical” cell of the population possesses the attributes of a cell capable of perpetuating the cancer, i.e., a CSC. In support of the CSC hypothesis, populations enriched for so-called “tumor-initiating” cells have demonstrated a corresponding increase in tumorigenicity as measured by dilution assay, although estimates have varied widely as to what the fractional contribution of tumor-initiating cells is in any given population. Some have taken this variability to suggest the CSC fraction may be nearly 100% after all, countering the CSC hypothesis, and that there are simply assay-dependent error rates in our ability to “reconfirm” CSC status at the cell level. To explore this controversy more quantitatively, we developed a simple cellular automaton model of CSC-driven tumor growth dynamics. Assuming CSC and non-stem cancer cells (CC) subpopulations coexist to some degree, we evaluated the impact of an environmentally dependent CSC symmetric division probability and a CC proliferation capacity on tumor progression and morphology. Our model predicts, as expected, that the frequency of CSC divisions that are symmetric highly influences the frequency of CSCs in the population, but goes on to predict the two frequencies can be widely divergent, and that spatial constraints will tend to increase the CSC fraction over time. Further, tumor progression times show a marked dependence on both the frequency of CSC divisions that are symmetric and on the proliferation capacities of CC. Together, these findings can explain, within the CSC hypothesis, the widely varying measures of stem cell fractions observed. In particular, although the CSC fraction is influenced by the (environmentally modifiable) CSC symmetric division probability, with the former converging to unity as the latter nears 100%, the CSC fraction becomes quite small even for symmetric division probabilities modestly lower than 100%. In the latter case, the tumor exhibits a clustered morphology and the CSC fraction steadily increases with time; more so on both counts when the death rate of CCs is higher. Such variations in CSC fraction and morphology are not only consistent with the CSC hypothesis, but lend support to it as one expected byproduct of the dynamical interactions that are predicted to take place among a relatively small CSC population, its CC counterpart, and the host compartment over time.


Acta Biotheoretica | 2010

Quantitative modeling of tumor dynamics and radiotherapy.

Heiko Enderling; Mark A. J. Chaplain; Philip Hahnfeldt

Cancer is a complex disease, necessitating research on many different levels; at the subcellular level to identify genes, proteins and signaling pathways associated with the disease; at the cellular level to identify, for example, cell-cell adhesion and communication mechanisms; at the tissue level to investigate disruption of homeostasis and interaction with the tissue of origin or settlement of metastasis; and finally at the systems level to explore its global impact, e.g. through the mechanism of cachexia. Mathematical models have been proposed to identify key mechanisms that underlie dynamics and events at every scale of interest, and increasing effort is now being paid to multi-scale models that bridge the different scales. With more biological data becoming available and with increased interdisciplinary efforts, theoretical models are rendering suitable tools to predict the origin and course of the disease. The ultimate aims of cancer models, however, are to enlighten our concept of the carcinogenesis process and to assist in the designing of treatment protocols that can reduce mortality and improve patient quality of life. Conventional treatment of cancer is surgery combined with radiotherapy or chemotherapy for localized tumors or systemic treatment of advanced cancers, respectively. Although radiation is widely used as treatment, most scheduling is based on empirical knowledge and less on the predictions of sophisticated growth dynamical models of treatment response. Part of the failure to translate modeling research to the clinic may stem from language barriers, exacerbated by often esoteric model renderings with inaccessible parameterization. Here we discuss some ideas for combining tractable dynamical tumor growth models with radiation response models using biologically accessible parameters to provide a more intuitive and exploitable framework for understanding the complexity of radiotherapy treatment and failure.


Integrative Biology | 2011

Phenotypic transition maps of 3D breast acini obtained by imaging-guided agent-based modeling

Jonathan Tang; Heiko Enderling; Sabine Becker-Weimann; Christopher Pham; Aris Polyzos; Chen-Yi Chen; Sylvain V. Costes

We introduce an agent-based model of epithelial cell morphogenesis to explore the complex interplay between apoptosis, proliferation, and polarization. By varying the activity levels of these mechanisms we derived phenotypic transition maps of normal and aberrant morphogenesis. These maps identify homeostatic ranges and morphologic stability conditions. The agent-based model was parameterized and validated using novel high-content image analysis of mammary acini morphogenesis in vitro with focus on time-dependent cell densities, proliferation and death rates, as well as acini morphologies. Model simulations reveal apoptosis being necessary and sufficient for initiating lumen formation, but cell polarization being the pivotal mechanism for maintaining physiological epithelium morphology and acini sphericity. Furthermore, simulations highlight that acinus growth arrest in normal acini can be achieved by controlling the fraction of proliferating cells. Interestingly, our simulations reveal a synergism between polarization and apoptosis in enhancing growth arrest. After validating the model with experimental data from a normal human breast line (MCF10A), the system was challenged to predict the growth of MCF10A where AKT-1 was overexpressed, leading to reduced apoptosis. As previously reported, this led to non growth-arrested acini, with very large sizes and partially filled lumen. However, surprisingly, image analysis revealed a much lower nuclear density than observed for normal acini. The growth kinetics indicates that these acini grew faster than the cells comprising it. The in silico model could not replicate this behavior, contradicting the classic paradigm that ductal carcinoma in situ is only the result of high proliferation and low apoptosis. Our simulations suggest that overexpression of AKT-1 must also perturb cell-cell and cell-ECM communication, reminding us that extracellular context can dictate cellular behavior.

Collaboration


Dive into the Heiko Enderling's collaboration.

Top Co-Authors

Avatar

Jan Poleszczuk

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eduardo G. Moros

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge