Heiko Konig
Indiana University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Heiko Konig.
Leukemia | 2003
Markus Müller; Norbert Gattermann; Tanja Lahaye; Michael W. Deininger; A. Berndt; Stefan Fruehauf; Andreas Neubauer; Thomas Fischer; Dieter K. Hossfeld; F. Schneller; Stefan W. Krause; Christoph Nerl; Herbert G. Sayer; Oliver G. Ottmann; Cornelius F. Waller; Walter E. Aulitzky; P. le Coutre; Mathias Freund; Kirsten Merx; Peter Paschka; Heiko Konig; Sebastian Kreil; Ute Berger; Harald Gschaidmeier; R. Hehlmann; Andreas Hochhaus
We sought to determine dynamics of BCR-ABL mRNA expression levels in 139 patients with chronic myelogenous leukemia (CML) in early chronic phase, randomized to receive imatinib (n=69) or interferon (IFN)/Ara-C (n=70). The response was sequentially monitored by cytogenetics from bone marrow metaphases (n=803) and qualitative and quantitative RT-PCR from peripheral blood samples (n=1117). Complete cytogenetic response (CCR) was achieved in 60 (imatinib, 87%) vs 10 patients (IFN/Ara-C, 14%) after a median observation time of 24 months. Within the first year after CCR, best median ratio BCR-ABL/ABL was 0.087%, (imatinib, n=48) vs 0.27% (IFN/Ara-C, n=9, P=0.025). BCR-ABL was undetectable in 25 cases by real-time PCR, but in only four patients by nested PCR. Median best response in patients with relapse after CCR was 0.24% (n=3) as compared to 0.029% in patients with continuous remission (n=52, P=0.029). We conclude that (i) treatment with imatinib in newly diagnosed CML patients is associated with a rapid decrease of BCR-ABL transcript levels; (ii) nested PCR may reveal residual BCR-ABL transcripts in samples that are negative by real-time PCR; (iii) BCR-ABL transcript levels parallel cytogenetic response, and (iv) imatinib is superior to IFN/Ara-C in terms of the speed and degree of molecular responses, but residual disease is rarely eliminated.
Leukemia | 2003
Peter Paschka; Markus Müller; Kirsten Merx; Sebastian Kreil; Claudia Schoch; Tanja Lahaye; A Weisser; A Petzold; Heiko Konig; Ute Berger; Harald Gschaidmeier; R. Hehlmann; Andreas Hochhaus
A significant proportion of chronic myeloid leukemia (CML) patients achieve a major cytogenetic remission (MCR) to imatinib therapy after failing interferon (IFN) α-based protocols. We sought to determine levels of residual disease in patients with MCR using various molecular methods and to establish a relation between residual BCR-ABL transcript levels and rate of relapse in complete cytogenetic remission (CCR). Response was measured by conventional cytogenetic analysis, hypermetaphase and interphase fluorescence in situ hybridization (HM-FISH, IP-FISH) of bone marrow (BM) cells, qualitative nested and quantitative reverse transcriptase polymerase chain reaction (RT-PCR) for BCR-ABL transcripts. We investigated 323 peripheral blood (PB) and BM samples from 48 CML patients who achieved a complete (Ph+ 0%; n=41) or partial (Ph+ 1–34%; n=7) cytogenetic remission after 3–20 months of imatinib therapy. Prior to imatinib, 35 patients were in chronic phase (CP), eight in accelerated phase (AP), four in myeloid and one in lymphoid blast crisis. HM-FISH results correlated with ratios BCR-ABL/ABL in PB and BM. In patients with CCR, residual disease was detectable by HM-FISH (31%), IP-FISH (18%), and RT-PCR (100%). During follow-up, BCR-ABL became undetectable in two patients (one CP, one AP) by both nested and quantitative RT-PCR. CCR is ongoing in 30 evaluable patients, 11 patients have relapsed. At the time of best response, median ratios BCR-ABL/ABL were 2.1% (range 0.82–7.8) in patients with subsequent relapse and 0.075% (range 0–3.9) in patients with ongoing remission (P=0.0011). All 16 CP patients, who achieved ratios BCR-ABL/ABL <0.1% as best molecular response are in continuous remission, while 6/13 patients (46%) with ratios ⩾0.1% have relapsed (P=0.0036). We conclude that: (i) in patients with CCR to imatinib, HM-FISH and RT-PCR usually reveal residual BCR-ABL+ cells; (ii) RT-PCR results derived from PB and BM are comparable in CP CML; and (iii) low levels of residual disease with ratios BCR-ABL/ABL <0.1% are associated with continuous remission.
Leukemia | 2008
Heiko Konig; Melissa Holtz; Hardik Modi; Paul W. Manley; Tessa L. Holyoake; Stephen J. Forman; Ravi Bhatia
The therapeutic success of imatinib in chronic myeloid leukemia (CML) is hampered by persistence of malignant stem cells. We investigated whether nilotinib, a more potent BCR-ABL kinase inhibitor could target CML primitive progenitors more effectively than imatinib. CML and normal progenitor cells were cultured with nilotinib or imatinib in growth factor supplemented medium. Nilotinib inhibited BCR-ABL kinase activity at lower concentrations than imatinib. Nilotinib inhibited mitogen-activated protein kinase (MAPK), AKT and STAT5 phosphorylation in CML CD34+ cells in the absence of growth factors (GFs), but did not suppress AKT and STAT5 activity, and resulted in increased MAPK activity, in the presence of GFs. Nilotinib and imatinib resulted in similar suppression of CML primitive and committed progenitors in long-term culture-initiating cell and colony-forming cell assays. Inhibition of progenitor growth was related to marked reduction in proliferation, but only a modest increase in apoptosis. Nilotinib did not show increased efficacy in reducing nondividing CML progenitors compared with imatinib. These results indicate that more potent tyrosine kinase inhibitors by themselves will not be more effective in eliminating CML progenitors than imatinib and that additional mechanism required for maintenance of malignant stem cells need to be identified to improve targeting of leukemia stem cells.
Cancer Research | 2008
Heiko Konig; Mhairi Copland; Su Chu; Richard Jove; Tessa L. Holyoake; Ravi Bhatia
Bcr-Abl tyrosine kinase inhibitors (TKI) are effective in inducing remissions in chronic myelogenous leukemia (CML) patients but do not eliminate primitive CML hematopoietic cells. There is a need to identify mechanisms that contribute to retention of CML progenitors. Src family tyrosine kinases have been identified as potential mediators of Bcr-Abl-induced leukemogenesis. Dasatinib (BMS-354825) is a potent dual Abl/Src kinase inhibitor approved for clinical use in CML patients. We evaluated Src activity in primitive human CML progenitors from different stages of disease and investigated effects of Dasatinib on Src activity and downstream signaling pathways. P-Src expression was increased in CD34+ cells and CD34+CD38- cells in all phases of CML. Dasatinib showed potent Src inhibitory activity in CML progenitors, inhibiting both Bcr-Abl-dependent and -independent Src activity. In contrast, Imatinib inhibited only Bcr-Abl-dependent Src activity. Dasatinib inhibited P-mitogen-activated protein kinase (MAPK), P-Akt, and P-STAT5 levels in CML progenitors in the absence of growth factors but not in the presence of growth factors. A marked increase in P-MAPK levels seen in the presence of growth factors with Imatinib was much less prominent with Dasatinib. Dasatinib significantly suppressed CML colony-forming cells and long-term culture-initiating cells but did not significantly alter the level of apoptosis-regulating proteins in CML CD34+ cells. Our results indicate that Dasatinib, in addition to potent anti-Bcr-Abl kinase activity, effectively inhibits Src kinase activity and downstream signaling pathways in CML progenitors but does not induce a strong proapoptotic response. These observations argue against a prominent role for Src kinases in persistence of primitive CML cells in TKI-treated patients.
Molecular Oncology | 2012
Sangkil Nam; Anna Scuto; Fan Yang; WenYong Chen; Sungman Park; Hwa Seung Yoo; Heiko Konig; Ravi Bhatia; Xinlai Cheng; Karl Heinz Merz; Gerhard Eisenbrand; Richard Jove
Indirubin is the major active anti‐tumor component of a traditional Chinese herbal medicine used for treatment of chronic myelogenous leukemia (CML). While previous studies indicate that indirubin is a promising therapeutic agent for CML, the molecular mechanism of action of indirubin is not fully understood. We report here that indirubin derivatives (IRDs) potently inhibit Signal Transducer and Activator of Transcription 5 (Stat5) protein in CML cells. Compound E804, which is the most potent in this series of IRDs, blocked Stat5 signaling in human K562 CML cells, imatinib‐resistant human KCL‐22 CML cells expressing the T315I mutant Bcr‐Abl (KCL‐22M), and CD34‐positive primary CML cells from patients. Autophosphorylation of Src family kinases (SFKs) was strongly inhibited in K562 and KCL‐22M cells at 5 μM E804, and in primary CML cells at 10 μM E804, although higher concentrations partially inhibited autophosphorylation of Bcr‐Abl. Previous studies indicate that SFKs cooperate with Bcr‐Abl to activate downstream Stat5 signaling. Activation of Stat5 was strongly blocked by E804 in CML cells. E804 down‐regulated expression of Stat5 target proteins Bcl‐xL and Mcl‐1, associated with induction of apoptosis. In sum, our findings identify IRDs as potent inhibitors of the SFK/Stat5 signaling pathway downstream of Bcr‐Abl, leading to apoptosis of K562, KCL‐22M and primary CML cells. IRDs represent a promising structural class for development of new therapeutics for wild type or T315I mutant Bcr‐Abl‐positive CML patients.
Expert Opinion on Therapeutic Targets | 2015
Heiko Konig; Mark Levis
Introduction: Approximately 23% of acute myeloid leukemia (AML) patients younger than 60 years of age carry a mutation in the transmembrane domain of the FMS-like tyrosine kinase-3 (FLT3) gene (FLT3/internal tandem duplications [ITD]). In normal karyotype AML, the presence of a FLT3/ITD mutation is associated with poor prognosis, as mirrored by a high risk of relapse even after allogeneic stem cell transplantation. The poor prognostic impact along with the observation that FLT3 is frequently overexpressed in the majority of AML cases has formed the platform for the development of FLT3-targeted strategies. To date, several FLT3 kinase inhibitors have been investigated in preclinical and clinical studies. However, as of yet, none of the studied FLT3 inhibitors has received FDA approval for routine clinical use in AML. This is in part due to the ‘off target’ effects observed with most inhibitors when administered at concentrations needed to achieve sustained levels of FLT3 inhibition, which are required to exhibit substantial cytotoxic effects against leukemic blasts. Furthermore, the development of resistance mutations has emerged as a clinical issue posing a threat to successful FLT3 inhibitor therapy. Areas covered: In this review, the authors provide a brief summary of FLT3 inhibitors investigated thus far, and discuss current treatment approaches and strategies how to best incorporate FLT3 tyrosine kinase inhibitors (TKIs) into therapy. Expert opinion: The combination of a FLT3 inhibitor with conventional chemotherapeutic regimens, epigenetic modifiers or inhibitors of FLT3 downstream and collateral effectors has emerged as a promising strategy to improve treatment outcome. The future of a tailored, molecular-based treatment approach for FLT3-mutated AML demands novel clinical trial concepts based on harmonized and aligned research goals between clinical and research centers and industry.
Haematologica | 2008
Paul La Rosée; Susanne Holm-Eriksen; Heiko Konig; Nicolai Härtel; Thomas Ernst; Julia Debatin; Martin C. Mueller; Philipp Erben; Anja Binckebanck; Lydia Wunderle; Yaping Shou; Margaret Dugan; R. Hehlmann; Oliver G. Ottmann; Andreas Hochhaus
Findings of this study suggest that monitoring the actual BCR-ABL inhibition in nilotinib treated patients may be useful for establishing effective dosing and for detecting resistance against the drug. Actual BCR-ABL kinase inhibition in vivo as determined by phospho-CRKL (pCRKL) monitoring has been recognized as a prognostic parameter in patients with chronic myelogenous leukemia treated with imatinib. We report a biomarker sub-study of the international phase I clinical trial of nilotinib (AMN107) using the established pCRKL assay in imatinib-resistant chronic myeloid leukemia or Ph+ acute lymphoblastic leukemia. A minimum dose (200 mg) required for effective BCR-ABL inhibition in imatinib resistant/intolerant leukemia was determined. The pre-clinical activity profile of nilotinib against mutant BCR-ABL was largely confirmed. Substantial differences between peripheral blood baseline pCRKL/CRKL ratios were observed when comparing chronic myeloid leukemia with Ph+ acute lymphoblastic leukemia. Finally, rapid BCR-ABL-reactivation shortly after starting nilotinib treatment was seen in acute lymphoblastic leukemia patients with progressive disease carrying the P-loop mutations Y253H, E255K, or mutation T315I. Monitoring the actual BCR-ABL inhibition in nilotinib treated patients using pCRKL as a surrogate is a means to establish effective dosing and to characterize resistance mechanisms against nilotinib.
Leukemia | 2015
Alison Sehgal; Heiko Konig; Daniel E. Johnson; Daolin Tang; Ravi K. Amaravadi; Michael Boyiadzis; Michael T. Lotze
A deeper understanding of the role of autophagy, literally ‘self-eating’, in normal and cancer cell biology has emerged over the last few years. Autophagy serves as a vehicle for cells to respond to various stressors including genomic, hypoxic and nutrient stress, and to oppose mechanisms of ‘programmed’ cell death. Here, we review not only mechanisms of cell death and cell survival but also the early successes in applying autophagy inhibition strategies in solid tumors using the only currently available clinical inhibitor, oral hydroxychloroquine. In acute leukemia, currently available chemotherapy drugs promote cell death and demonstrate clinical benefit, but relapse and subsequent chemotherapy resistance is common. Increasing preclinical data suggest that autophagy is active in leukemia as a means of promoting cell survival in response to chemotherapy. We propose coupling autophagy inhibition strategies with current cytotoxic chemotherapy and discuss synergistic combinations of available anti-leukemic therapies with autophagy inhibition. Furthermore, novel autophagy inhibitors are in development and promise to provide new therapeutic opportunities for patients with leukemia.
Blood | 2017
Steven Knapper; Nigel H. Russell; Amanda F. Gilkes; Robert Kerrin Hills; Rosemary E. Gale; J Cavenagh; Gail Jones; Lars Kjeldsen; Michael R. Grunwald; Ian Thomas; Heiko Konig; Mark Levis; Alan Kenneth Burnett
The clinical benefit of adding FMS-like tyrosine kinase-3 (FLT3)-directed small molecule therapy to standard first-line treatment of acute myeloid leukemia (AML) has not yet been established. As part of the UK AML15 and AML17 trials, patients with previously untreated AML and confirmed FLT3-activating mutations, mostly younger than 60 years, were randomly assigned either to receive oral lestaurtinib (CEP701) or not after each of 4 cycles of induction and consolidation chemotherapy. Lestaurtinib was commenced 2 days after completing chemotherapy and administered in cycles of up to 28 days. The trials ran consecutively. Primary endpoints were overall survival in AML15 and relapse-free survival in AML17; outcome data were meta-analyzed. Five hundred patients were randomly assigned between lestaurtinib and control: 74% had FLT3-internal tandem duplication mutations, 23% FLT3-tyrosine kinase domain point mutations, and 2% both types. No significant differences were seen in either 5-year overall survival (lestaurtinib 46% vs control 45%; hazard ratio, 0.90; 95% CI 0.70-1.15; P = .3) or 5-year relapse-free survival (40% vs 36%; hazard ratio, 0.88; 95% CI 0.69-1.12; P = .3). Exploratory subgroup analysis suggested survival benefit with lestaurtinib in patients receiving concomitant azole antifungal prophylaxis and gemtuzumab ozogamicin with the first course of chemotherapy. Correlative studies included analysis of in vivo FLT3 inhibition by plasma inhibitory activity assay and indicated improved overall survival and significantly reduced rates of relapse in lestaurtinib-treated patients who achieved sustained greater than 85% FLT3 inhibition. In conclusion, combining lestaurtinib with intensive chemotherapy proved feasible in younger patients with newly diagnosed FLT3-mutated AML, but yielded no overall clinical benefit. The improved clinical outcomes seen in patients achieving sustained FLT3 inhibition encourage continued evaluation of FLT3-directed therapy alongside front-line AML treatment. The UK AML15 and AML17 trials are registered at www.isrctn.com/ISRCTN17161961 and www.isrctn.com/ISRCTN55675535 respectively.
Embo Molecular Medicine | 2013
Jiewen Zhu; Longen Zhou; Guikai Wu; Heiko Konig; Xiaoqin Lin; Guideng Li; Xiao Long Qiu; Chi Fen Chen; Chun-Mei Hu; Erin M. Goldblatt; Ravi Bhatia; A. Richard Chamberlin; Phang Lang Chen; Wen-Hwa Lee
RAD51 recombinase activity plays a critical role for cancer cell proliferation and survival, and often contributes to drug‐resistance. Abnormally elevated RAD51 function and hyperactive homologous recombination (HR) rates have been found in a panel of cancers, including breast cancer and chronic myeloid leukaemia (CML). Directly targeting RAD51 and attenuating the deregulated RAD51 activity has therefore been proposed as an alternative and supplementary strategy for cancer treatment. Here we show that a newly identified small molecule, IBR2, disrupts RAD51 multimerization, accelerates proteasome‐mediated RAD51 protein degradation, reduces ionizing radiation‐induced RAD51 foci formation, impairs HR, inhibits cancer cell growth and induces apoptosis. In a murine imatinib‐resistant CML model bearing the T315I Bcr‐abl mutation, IBR2, but not imatinib, significantly prolonged animal survival. Moreover, IBR2 effectively inhibits the proliferation of CD34+ progenitor cells from CML patients resistant to known BCR‐ABL inhibitors. Therefore, small molecule inhibitors of RAD51 may suggest a novel class of broad‐spectrum therapeutics for difficult‐to‐treat cancers.