Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heiko Lickert is active.

Publication


Featured researches published by Heiko Lickert.


Molecular Systems Biology | 2012

Novel biomarkers for pre-diabetes identified by metabolomics

Rui Wang-Sattler; Zhonghao Yu; Christian Herder; Ana C. Messias; Anna Floegel; Ying He; Katharina Heim; Monica Campillos; Christina Holzapfel; Barbara Thorand; Harald Grallert; Tao Xu; Erik Bader; Cornelia Huth; Kirstin Mittelstrass; Angela Döring; Christa Meisinger; Christian Gieger; Cornelia Prehn; Werner Roemisch-Margl; Maren Carstensen; Lu Xie; Hisami Yamanaka-Okumura; Guihong Xing; Uta Ceglarek; Joachim Thiery; Guido Giani; Heiko Lickert; Xu Lin; Yixue Li

Type 2 diabetes (T2D) can be prevented in pre‐diabetic individuals with impaired glucose tolerance (IGT). Here, we have used a metabolomics approach to identify candidate biomarkers of pre‐diabetes. We quantified 140 metabolites for 4297 fasting serum samples in the population‐based Cooperative Health Research in the Region of Augsburg (KORA) cohort. Our study revealed significant metabolic variation in pre‐diabetic individuals that are distinct from known diabetes risk indicators, such as glycosylated hemoglobin levels, fasting glucose and insulin. We identified three metabolites (glycine, lysophosphatidylcholine (LPC) (18:2) and acetylcarnitine) that had significantly altered levels in IGT individuals as compared to those with normal glucose tolerance, with P‐values ranging from 2.4 × 10−4 to 2.1 × 10−13. Lower levels of glycine and LPC were found to be predictors not only for IGT but also for T2D, and were independently confirmed in the European Prospective Investigation into Cancer and Nutrition (EPIC)‐Potsdam cohort. Using metabolite–protein network analysis, we identified seven T2D‐related genes that are associated with these three IGT‐specific metabolites by multiple interactions with four enzymes. The expression levels of these enzymes correlate with changes in the metabolite concentrations linked to diabetes. Our results may help developing novel strategies to prevent T2D.


Developmental Cell | 2002

Formation of Multiple Hearts in Mice following Deletion of β-catenin in the Embryonic Endoderm

Heiko Lickert; Stefanie Kutsch; Benoı̂t Kanzler; Yoshitaka Tamai; Makoto M. Taketo; Rolf Kemler

Using Cre/loxP, we conditionally inactivated the beta-catenin gene in cells of structures that exhibit important embryonic organizer functions: the visceral endoderm, the node, the notochord, and the definitive endoderm. Mesoderm formation was not affected in the mutant embryos, but the node was missing, patterning of the head and trunk was affected, and no notochord or somites were formed. Surprisingly, deletion of beta-catenin in the definitive endoderm led to the formation of multiple hearts all along the anterior-posterior (A/P) axis of the embryo. Ectopic hearts developed in parallel with the normal heart in regions of ectopic Bmp2 expression. We provide evidence that ablation of beta-catenin in embryonic endoderm changes cell fate from endoderm to precardiac mesoderm, consistent with the existence of bipotential mesendodermal progenitors in mouse embryos.


Cell | 2002

Reptin and Pontin Antagonistically Regulate Heart Growth in Zebrafish Embryos

Wolfgang Rottbauer; Andrew J. Saurin; Heiko Lickert; Xuetong Shen; C.Geoff Burns; Z.Galen Wo; Rolf Kemler; Robert E. Kingston; Carl Wu; Mark C. Fishman

Organ size is precisely regulated during development, but the control mechanisms remain obscure. We have isolated a mutation in zebrafish, liebeskummer (lik), which causes development of hyperplastic embryonic hearts. lik encodes Reptin, a component of a DNA-stimulated ATPase complex. The mutation activates ATPase activity of Reptin complexes and causes a cell-autonomous proliferation of cardiomyocytes to begin well after progenitors have fashioned the primitive heart tube. With regard to heart growth, beta-catenin and Pontin, a DNA-stimulated ATPase that is often part of complexes with Reptin, are in the same genetic pathways. Pontin reduction phenocopies the cardiac hyperplasia of the lik mutation. Thus, the Reptin/Pontin ratio serves to regulate heart growth during development, at least in part via the beta-catenin pathway.


Development | 2009

Foxa2 regulates polarity and epithelialization in the endoderm germ layer of the mouse embryo

Ingo Burtscher; Heiko Lickert

In the mouse, one of the earliest events in the determination of cell fate is the segregation of cells into germ layers during gastrulation; however, the cellular and molecular details are not well defined due to intrauterine development. We were able to visualize a clear sequence of events occurring in the process of germ-layer formation, using immunohistochemistry and time-lapse confocal imaging. The T-box transcription factor brachyury (T) and the Forkhead transcription factor Foxa2 specify mesoderm and endoderm in the posterior epiblast. Fate-specified epiblast cells lose their polarity and undergo epithelial-mesenchymal transition to invade into the primitive streak region, where these cell populations quickly separate and differentiate into morphologically and molecularly distinct Foxa2-positive endoderm and T-positive mesoderm populations. The endoderm cells flatten and acquire apical-basal polarity during intercalation into the outside epithelium in order to establish proper intracellular junctions with pre-existing cells. By contrast, the mesodermal cells become spherical during migration and acquire a mesenchymal fate. Interestingly, axial mesodermal cells are descended from Foxa2-positive epiblast cells that upregulate T protein in the anterior primitive streak region. These cells, as well as Foxa2-positive endoderm cells, are highly polarized and epithelialized, suggesting that Foxa2 promotes an epithelial fate and suppresses a mesenchymal fate. This observation is supported by the fact that Foxa2 mutant endodermal cells fail to maintain polarity and do not establish proper cellular junctions, and are thus unable to functionally integrate into the endoderm epithelium. We propose that Foxa2 regulates a molecular program that induces an epithelial cellular phenotype.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Baf60c is a nuclear Notch signaling component required for the establishment of left–right asymmetry

Jun K. Takeuchi; Heiko Lickert; Brent W. Bisgrove; Xin Sun; Masamichi Yamamoto; Kallayanee Chawengsaksophak; Hiroshi Hamada; H. Joseph Yost; Janet Rossant; Benoit G. Bruneau

Notch-mediated induction of Nodal at the vertebrate node is a critical step in initiating left–right (LR) asymmetry. In mice and zebrafish we show that Baf60c, a subunit of the Swi/Snf-like BAF chromatin remodeling complex, is essential for establishment of LR asymmetry. Baf60c knockdown mouse embryos fail to activate Nodal at the node and also have abnormal node morphology with mixing of crown and pit cells. In cell culture, Baf60c is required for Notch-dependent transcriptional activation and functions to stabilize interactions between activated Notch and its DNA-binding partner, RBP-J. Brg1 is also required for these processes, suggesting that BAF complexes are key components of nuclear Notch signaling. We propose a critical role for Baf60c in Notch-dependent transcription and LR asymmetry.


Developmental Cell | 2010

Pitchfork Regulates Primary Cilia Disassembly and Left-Right Asymmetry

Doris Kinzel; Karsten Boldt; Erica E. Davis; Ingo Burtscher; Dietrich Trümbach; Bill H. Diplas; Tania Attié-Bitach; Wolfgang Wurst; Nicholas Katsanis; Marius Ueffing; Heiko Lickert

A variety of developmental disorders have been associated with ciliary defects, yet the controls that govern cilia disassembly are largely unknown. Here we report a mouse embryonic node gene, which we named Pitchfork (Pifo). Pifo associates with ciliary targeting complexes and accumulates at the basal body during cilia disassembly. Haploinsufficiency causes a unique node cilia duplication phenotype, left-right asymmetry defects, and heart failure. This phenotype is likely relevant in humans, because we identified a heterozygous R80K PIFO mutation in a fetus with situs inversus and cystic liver and kidneys, and in patient with double-outflow right ventricle. We show that PIFO, but not R80K PIFO, is sufficient to activate Aurora A, a protooncogenic kinase that induces cilia retraction, and that Pifo/PIFO mutation causes cilia retraction, basal body liberation, and overreplication defects. Thus, the observation of a disassembly phenotype in vivo provides an entry point to understand and categorize ciliary disease. AUTHOR AUDIO:


Nature | 2016

Identification of proliferative and mature β-cells in the islets of Langerhans

Erik Bader; Adriana Migliorini; Moritz Gegg; Noah Moruzzi; Jantje Gerdes; Sara S. Roscioni; Mostafa Bakhti; Elisabeth Brandl; Martin Irmler; Johannes Beckers; Michaela Aichler; Annette Feuchtinger; Christin Leitzinger; Hans Zischka; Rui Wang-Sattler; Martin Jastroch; Matthias H. Tschöp; Fausto Machicao; Harald Staiger; Hans-Ulrich Häring; Helena Chmelova; Julie A. Chouinard; Nikolay Oskolkov; Olle Korsgren; Stephan Speier; Heiko Lickert

Insulin-dependent diabetes is a complex multifactorial disorder characterized by loss or dysfunction of β-cells. Pancreatic β-cells differ in size, glucose responsiveness, insulin secretion and precursor cell potential; understanding the mechanisms that underlie this functional heterogeneity might make it possible to develop new regenerative approaches. Here we show that Fltp (also known as Flattop and Cfap126), a Wnt/planar cell polarity (PCP) effector and reporter gene, acts as a marker gene that subdivides endocrine cells into two subpopulations and distinguishes proliferation-competent from mature β-cells with distinct molecular, physiological and ultrastructural features. Genetic lineage tracing revealed that endocrine subpopulations from Fltp-negative and -positive lineages react differently to physiological and pathological changes. The expression of Fltp increases when endocrine cells cluster together to form polarized and mature 3D islet mini-organs. We show that 3D architecture and Wnt/PCP ligands are sufficient to trigger β-cell maturation. By contrast, the Wnt/PCP effector Fltp is not necessary for β-cell development, proliferation or maturation. We conclude that 3D architecture and Wnt/PCP signalling underlie functional β-cell heterogeneity and induce β-cell maturation. The identification of Fltp as a marker for endocrine subpopulations sheds light on the molecular underpinnings of islet cell heterogeneity and plasticity and might enable targeting of endocrine subpopulations for the regeneration of functional β-cell mass in diabetic patients.


Genome Research | 2010

Phenotypic annotation of the mouse X chromosome

Brian Cox; Marion Vollmer; Owen J. Tamplin; Mei Lu; Steffen Biechele; Marina Gertsenstein; Claude Van Campenhout; Thomas Floss; Ralf Kühn; Wolfgang Wurst; Heiko Lickert; Janet Rossant

Mutational screens are an effective means used in the functional annotation of a genome. We present a method for a mutational screen of the mouse X chromosome using gene trap technologies. This method has the potential to screen all of the genes on the X chromosome without establishing mutant animals, as all gene-trapped embryonic stem (ES) cell lines are hemizygous null for mutations on the X chromosome. Based on this method, embryonic morphological phenotypes and expression patterns for 58 genes were assessed, approximately 10% of all human and mouse syntenic genes on the X chromosome. Of these, 17 are novel embryonic lethal mutations and nine are mutant mouse models of genes associated with genetic disease in humans, including BCOR and PORCN. The rate of lethal mutations is similar to previous mutagenic screens of the autosomes. Interestingly, some genes associated with X-linked mental retardation (XLMR) in humans show lethal phenotypes in mice, suggesting that null mutations cannot be responsible for all cases of XLMR. The entire data set is available via the publicly accessible website (http://xlinkedgenes.ibme.utoronto.ca/).


BMC Genomics | 2008

Microarray analysis of Foxa2 mutant mouse embryos reveals novel gene expression and inductive roles for the gastrula organizer and its derivatives

Owen J. Tamplin; Doris Kinzel; Brian Cox; Christine E Bell; Janet Rossant; Heiko Lickert

BackgroundThe Spemann/Mangold organizer is a transient tissue critical for patterning the gastrula stage vertebrate embryo and formation of the three germ layers. Despite its important role during development, there are still relatively few genes with specific expression in the organizer and its derivatives. Foxa2 is a forkhead transcription factor that is absolutely required for formation of the mammalian equivalent of the organizer, the node, the axial mesoderm and the definitive endoderm (DE). However, the targets of Foxa2 during embryogenesis, and the molecular impact of organizer loss on the gastrula embryo, have not been well defined.ResultsTo identify genes specific to the Spemann/Mangold organizer, we performed a microarray-based screen that compared wild-type and Foxa2 mutant embryos at late gastrulation stage (E7.5). We could detect genes that were consistently down-regulated in replicate pools of mutant embryos versus wild-type, and these included a number of known node and DE markers. We selected 314 genes without previously published data at E7.5 and screened for expression by whole mount in situ hybridization. We identified 10 novel expression patterns in the node and 5 in the definitive endoderm. We also found significant reduction of markers expressed in secondary tissues that require interaction with the organizer and its derivatives, such as cardiac mesoderm, vasculature, primitive streak, and anterior neuroectoderm.ConclusionThe genes identified in this screen represent novel Spemann/Mangold organizer genes as well as potential Foxa2 targets. Further investigation will be needed to define these genes as novel developmental regulatory factors involved in organizer formation and function. We have placed these genes in a Foxa2-dependent genetic regulatory network and we hypothesize how Foxa2 may regulate a molecular program of Spemann/Mangold organizer development. We have also shown how early loss of the organizer and its inductive properties in an otherwise normal embryo, impacts on the molecular profile of surrounding tissues.


Nature | 2016

Early myeloid lineage choice is not initiated by random PU.1 to GATA1 protein ratios

Philipp S. Hoppe; Michael Schwarzfischer; Dirk Loeffler; Konstantinos D. Kokkaliaris; Oliver Hilsenbeck; Nadine Moritz; Max Endele; Adam Filipczyk; Adriana Gambardella; Nouraiz Ahmed; Martin Etzrodt; Daniel L. Coutu; Michael A. Rieger; Carsten Marr; Michael Strasser; Bernhard Schauberger; Ingo Burtscher; Olga Ermakova; Antje Bürger; Heiko Lickert; Claus Nerlov; Fabian J. Theis; Timm Schroeder

The mechanisms underlying haematopoietic lineage decisions remain disputed. Lineage-affiliated transcription factors with the capacity for lineage reprogramming, positive auto-regulation and mutual inhibition have been described as being expressed in uncommitted cell populations. This led to the assumption that lineage choice is cell-intrinsically initiated and determined by stochastic switches of randomly fluctuating cross-antagonistic transcription factors. However, this hypothesis was developed on the basis of RNA expression data from snapshot and/or population-averaged analyses. Alternative models of lineage choice therefore cannot be excluded. Here we use novel reporter mouse lines and live imaging for continuous single-cell long-term quantification of the transcription factors GATA1 and PU.1 (also known as SPI1). We analyse individual haematopoietic stem cells throughout differentiation into megakaryocytic–erythroid and granulocytic–monocytic lineages. The observed expression dynamics are incompatible with the assumption that stochastic switching between PU.1 and GATA1 precedes and initiates megakaryocytic–erythroid versus granulocytic–monocytic lineage decision-making. Rather, our findings suggest that these transcription factors are only executing and reinforcing lineage choice once made. These results challenge the current prevailing model of early myeloid lineage choice.

Collaboration


Dive into the Heiko Lickert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claude Van Campenhout

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rui Wang-Sattler

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge