Heiko Runz
Merck & Co.
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Heiko Runz.
Gastroenterology | 2010
Tom H. Karlsen; Andre Franke; Espen Melum; Arthur Kaser; Johannes R. Hov; Tobias Balschun; Benedicte A. Lie; Annika Bergquist; Christoph Schramm; Tobias J. Weismüller; Daniel Gotthardt; Christian Rust; Eva Philipp; Teresa Fritz; Liesbet Henckaerts; Rinse K. Weersma; Pieter Stokkers; Cyriel Y. Ponsioen; Cisca Wijmenga; Martina Sterneck; Michael Nothnagel; Jochen Hampe; Andreas Teufel; Heiko Runz; Philip Rosenstiel; Adolf Stiehl; Severine Vermeire; Ulrich Beuers; Michael P. Manns; Erik Schrumpf
BACKGROUND & AIMS We aimed to characterize the genetic susceptibility to primary sclerosing cholangitis (PSC) by means of a genome-wide association analysis of single nucleotide polymorphism (SNP) markers. METHODS A total of 443,816 SNPs on the Affymetrix SNP Array 5.0 (Affymetrix, Santa Clara, CA) were genotyped in 285 Norwegian PSC patients and 298 healthy controls. Associations detected in this discovery panel were re-examined in independent case-control panels from Scandinavia (137 PSC cases and 368 controls), Belgium/The Netherlands (229 PSC cases and 735 controls), and Germany (400 cases and 1832 controls). RESULTS The strongest associations were detected near HLA-B at chromosome 6p21 (rs3099844: odds ratio [OR], 4.8; 95% confidence interval [CI], 3.6-6.5; P = 2.6 x 10(-26); and rs2844559: OR, 4.7; 95% CI, 3.5-6.4; P = 4.2 x 10(-26) in the discovery panel). Outside the HLA complex, rs9524260 at chromosome 13q31 showed significant associations in 3 of 4 study panels. Lentiviral silencing of glypican 6, encoded at this locus, led to the up-regulation of proinflammatory markers in a cholangiocyte cell line. Of 15 established ulcerative colitis susceptibility loci, significant replication was obtained at chromosomes 2q35 and 3p21 (rs12612347: OR, 1.26; 95% CI, 1.06-1.50; and rs3197999: OR, 1.22; 95% CI, 1.02-1.47, respectively), with circumstantial evidence supporting the G-protein-coupled bile acid receptor 1 and macrophage-stimulating 1, respectively, as the likely disease genes. CONCLUSIONS Strong HLA associations and a subset of genes involved in bile homeostasis and other inflammatory conditions constitute key components of the genetic architecture of PSC.
Nature Genetics | 2011
Espen Melum; Andre Franke; Christoph Schramm; Tobias J. Weismüller; Daniel Gotthardt; Felix Offner; Brian D. Juran; Jon K. Laerdahl; Verena Labi; Einar Björnsson; Rinse K. Weersma; Liesbet Henckaerts; Andreas Teufel; Christian Rust; Eva Ellinghaus; Tobias Balschun; Kirsten Muri Boberg; David Ellinghaus; Annika Bergquist; Peter Sauer; Euijung Ryu; Johannes R. Hov; Jochen Wedemeyer; Björn Lindkvist; Michael Wittig; Robert J. Porte; Kristian Holm; Christian Gieger; H-Erich Wichmann; Pieter Stokkers
Primary sclerosing cholangitis (PSC) is a chronic bile duct disease affecting 2.4–7.5% of individuals with inflammatory bowel disease. We performed a genome-wide association analysis of 2,466,182 SNPs in 715 individuals with PSC and 2,962 controls, followed by replication in 1,025 PSC cases and 2,174 controls. We detected non-HLA associations at rs3197999 in MST1 and rs6720394 near BCL2L11 (combined P = 1.1 × 10−16 and P = 4.1 × 10−8, respectively).
Journal of Hepatology | 2012
Trine Folseraas; Espen Melum; Philipp Rausch; Brian D. Juran; Eva Ellinghaus; Alexey Shiryaev; Jon K. Laerdahl; David Ellinghaus; Christoph Schramm; Tobias J. Weismüller; Daniel Gotthardt; Johannes R. Hov; O. P. F. Clausen; Rinse K. Weersma; Marcel Janse; Kirsten Muri Boberg; Einar Björnsson; Hanns-Ulrich Marschall; Isabelle Cleynen; Philip Rosenstiel; Kristian Holm; Andreas Teufel; Christian Rust; Christian Gieger; H-Erich Wichmann; Annika Bergquist; Euijung Ryu; Cyriel Y. Ponsioen; Heiko Runz; Martina Sterneck
BACKGROUND & AIMS A limited number of genetic risk factors have been reported in primary sclerosing cholangitis (PSC). To discover further genetic susceptibility factors for PSC, we followed up on a second tier of single nucleotide polymorphisms (SNPs) from a genome-wide association study (GWAS). METHODS We analyzed 45 SNPs in 1221 PSC cases and 3508 controls. The association results from the replication analysis and the original GWAS (715 PSC cases and 2962 controls) were combined in a meta-analysis comprising 1936 PSC cases and 6470 controls. We performed an analysis of bile microbial community composition in 39 PSC patients by 16S rRNA sequencing. RESULTS Seventeen SNPs representing 12 distinct genetic loci achieved nominal significance (p(replication) <0.05) in the replication. The most robust novel association was detected at chromosome 1p36 (rs3748816; p(combined)=2.1 × 10(-8)) where the MMEL1 and TNFRSF14 genes represent potential disease genes. Eight additional novel loci showed suggestive evidence of association (p(repl) <0.05). FUT2 at chromosome 19q13 (rs602662; p(comb)=1.9 × 10(-6), rs281377; p(comb)=2.1 × 10(-6) and rs601338; p(comb)=2.7 × 10(-6)) is notable due to its implication in altered susceptibility to infectious agents. We found that FUT2 secretor status and genotype defined by rs601338 significantly influence biliary microbial community composition in PSC patients. CONCLUSIONS We identify multiple new PSC risk loci by extended analysis of a PSC GWAS. FUT2 genotype needs to be taken into account when assessing the influence of microbiota on biliary pathology in PSC.
Hepatology | 2013
David Ellinghaus; Trine Folseraas; Kristian Holm; Eva Ellinghaus; Espen Melum; Tobias Balschun; Jon K. Laerdahl; Alexey Shiryaev; Daniel Gotthardt; Tobias J. Weismüller; Christoph Schramm; Michael Wittig; Annika Bergquist; Einar Björnsson; Hanns-Ulrich Marschall; Morten H. Vatn; Andreas Teufel; Christian Rust; Christian Gieger; H-Erich Wichmann; Heiko Runz; Martina Sterneck; Christian Rupp; Felix Braun; Rinse K. Weersma; Cisca Wijmenga; Cyriel Y. Ponsioen; Christopher G. Mathew; Paul Rutgeerts; Severine Vermeire
Approximately 60%‐80% of patients with primary sclerosing cholangitis (PSC) have concurrent ulcerative colitis (UC). Previous genome‐wide association studies (GWAS) in PSC have detected a number of susceptibility loci that also show associations in UC and other immune‐mediated diseases. We aimed to systematically compare genetic associations in PSC with genotype data in UC patients with the aim of detecting new susceptibility loci for PSC. We performed combined analyses of GWAS for PSC and UC comprising 392 PSC cases, 987 UC cases, and 2,977 controls and followed up top association signals in an additional 1,012 PSC cases, 4,444 UC cases, and 11,659 controls. We discovered novel genome‐wide significant associations with PSC at 2q37 [rs3749171 at G‐protein‐coupled receptor 35 (GPR35); P = 3.0 × 10−9 in the overall study population, combined odds ratio [OR] and 95% confidence interval [CI] of 1.39 (1.24‐1.55)] and at 18q21 [rs1452787 at transcription factor 4 (TCF4); P = 2.61 × 10−8, OR (95% CI) = 0.75 (0.68‐0.83)]. In addition, several suggestive PSC associations were detected. The GPR35 rs3749171 is a missense single nucleotide polymorphism resulting in a shift from threonine to methionine. Structural modeling showed that rs3749171 is located in the third transmembrane helix of GPR35 and could possibly alter efficiency of signaling through the GPR35 receptor. Conclusion: By refining the analysis of a PSC GWAS by parallel assessments in a UC GWAS, we were able to detect two novel risk loci at genome‐wide significance levels. GPR35 shows associations in both UC and PSC, whereas TCF4 represents a PSC risk locus not associated with UC. Both loci may represent previously unexplored aspects of PSC pathogenesis. (HEPATOLOGY 2013;58:1074–1083)
Hepatology | 2008
Daniel Gotthardt; Heiko Runz; Verena Keitel; Christine Fischer; Christa Flechtenmacher; Michael Wirtenberger; Karl Heinz Weiss; Sandra Imparato; Annika Braun; Kari Hemminki; Wolfgang Stremmel; Franz Rüschendorf; Adolf Stiehl; Ralf Kubitz; Barbara Burwinkel; Peter Schirmacher; A.S. Knisely; Johannes Zschocke; Peter Sauer
Cholestatic liver disease (CLD) is a major cause of progressive liver damage and liver failure. Several forms of biliary cirrhosis are caused by mutations in specific genes. We sought to identify a genetic defect in a family with CLD impossible to assign to a distinct pathogenic entity. Clinical and histopathological characterization of the family members, microarray‐based single‐nucleotide polymorphism genotyping, and analysis of candidate genes were performed. Among six of 11 siblings severely affected by idiopathic CLD in a family from a population isolate in Transylvania, three died of cirrhosis (aged 5, 7, and 43 years) and three had adult‐onset disease with small duct cholangiopathy, including ductopenia. Others were mildly affected and experienced intrahepatic cholestasis of pregnancy, miscarriages, or stillbirth. Pedigree studies revealed distant parental consanguinity. Genome‐wide linkage analysis and autozygosity mapping yielded a single maximal lod‐score of 3.88 on chromosome 7q21.1‐7q22, excluding other genomic loci. Sequencing of ABCB4 at this locus revealed a novel missense mutation c.2362C>T (p.Arg788Trp) which cosegregated with severity of disease. Bile from a mutation homozygote showed a reduced phosphatidylcholine/bile acid ratio, consistent with reduced ABCB4 phosphatidylcholine transport activity. Conclusion: We show that a missense mutation in ABCB4 is a cause for ductopenic CLD in adulthood. Allelic status correlated with severity of liver disease ranging from intrahepatic cholestasis of pregnancy through fibrosis to cirrhosis and death in childhood and adulthood. Mutational analysis of ABCB4 should be generally considered in all patients with cholestatic liver disease of unknown etiology regardless of age and onset of disease. (HEPATOLOGY 2008.)
Cell Metabolism | 2009
Fabian Bartz; Luise Kern; Dorothee Erz; Mingang Zhu; Daniel Gilbert; Till Meinhof; Ute Wirkner; Holger Erfle; Martina U. Muckenthaler; Rainer Pepperkok; Heiko Runz
Elevated plasma cholesterol levels are considered responsible for excess cardiovascular morbidity and mortality. Cholesterol in plasma is tightly controlled by cholesterol within cells. Here, we developed and applied an integrative functional genomics strategy that allows systematic identification of regulators of cellular cholesterol levels. Candidate genes were identified by genome-wide gene-expression profiling of sterol-depleted cells and systematic literature queries. The role of these genes in cholesterol regulation was then tested by targeted siRNA knockdown experiments quantifying cellular cholesterol levels and the efficiency of low-density lipoprotein (LDL) uptake. With this strategy, 20 genes were identified as functional regulators of cellular cholesterol homeostasis. Of these, we describe TMEM97 as SREBP target gene that under sterol-depleted conditions localizes to endo-/lysosomal compartments and binds to LDL cholesterol transport-regulating protein Niemann-Pick C1 (NPC1). Taken together, TMEM97 and other factors described here are promising to yield further insights into how cells control cholesterol levels.
Molecular Systems Biology | 2014
Murat Iskar; Georg Zeller; Peter Blattmann; Monica Campillos; Michael Kuhn; Katarzyna H Kaminska; Heiko Runz; Anne-Claude Gavin; Rainer Pepperkok; Vera van Noort; Peer Bork
In pharmacology, it is crucial to understand the complex biological responses that drugs elicit in the human organism and how well they can be inferred from model organisms. We therefore identified a large set of drug‐induced transcriptional modules from genome‐wide microarray data of drug‐treated human cell lines and rat liver, and first characterized their conservation. Over 70% of these modules were common for multiple cell lines and 15% were conserved between the human in vitro and the rat in vivo system. We then illustrate the utility of conserved and cell‐type‐specific drug‐induced modules by predicting and experimentally validating (i) gene functions, e.g., 10 novel regulators of cellular cholesterol homeostasis and (ii) new mechanisms of action for existing drugs, thereby providing a starting point for drug repositioning, e.g., novel cell cycle inhibitors and new modulators of α‐adrenergic receptor, peroxisome proliferator‐activated receptor and estrogen receptor. Taken together, the identified modules reveal the conservation of transcriptional responses towards drugs across cell types and organisms, and improve our understanding of both the molecular basis of drug action and human biology.
Orphanet Journal of Rare Diseases | 2013
Miriam Stampfer; Susanne Theiss; Yasmina Amraoui; Xuntian Jiang; Sigrid Keller; Daniel S. Ory; Eugen Mengel; Christine Fischer; Heiko Runz
BackgroundThe neurodegenerative lysosomal storage disorder Niemann-Pick disease type C (NP-C) is characterized by a broad clinical variability involving neurological, psychiatric and systemic signs. Diverse patterns of disease manifestation and progression considerably delay its diagnosis. Here we introduce the NP-C clinical database (NPC-cdb) to systematically obtain, store and analyze diagnostic and clinical findings in patients with NP-C. We apply NPC-cdb to study NP-C temporal expression in a large German-Swiss patient cohort.MethodsCurrent and past medical history was systematically acquired from 42 patients using tailored questionnaires. Manifestation of 72 distinct neuropsychiatric signs was modeled over the course of disease. The sequence of disease progression was re-constructed by a novel clinical outcome scale (NPC-cdb score).ResultsThe efficiency of current clinical diagnostic standards negatively correlates with duration of disease (p<3.9x10-4), suggesting insufficient sensitivity in patients early in the disease process. Neurological signs considered as typical for NP-C were frequent (e.g., cognitive impairment 86%, ataxia 79%, vertical supranuclear gaze palsy 76%) and their presence co-occurred with accelerated diagnosis. However, less specific neuropsychiatric signs were reported to arise considerably more early in the disease process (e.g., clumsiness -4.9±1.1 y before diagnosis). Most patients showed a steady disease progression that correlated with age at neurological onset. However, a distinct subcohort (n=6) with initially steadily progressing disease later showed a 2.9-fold accelerated progression that was associated with the onset of seizures (p<7x10-4), suggesting seizures as predictive for a poor prognosis.ConclusionsConsidering early, but less specific neuropsychiatric signs may accelerate the path to diagnosing NP-C in a patient.
Embo Molecular Medicine | 2010
Katharina Rauschenberger; Katja Schöler; Jörn Oliver Sass; Sven W. Sauer; Zdenka Djuric; Cordula Rumig; Nicole I. Wolf; Jürgen G. Okun; Stefan Kölker; Heinz Schwarz; Christine Fischer; Beate Katharina Grziwa; Heiko Runz; Astrid Nümann; N. Shafqat; K.L. Kavanagh; Günter J. Hämmerling; Julian Shield; U. Wendel; David M. Stern; Peter P. Nawroth; Georg F. Hoffmann; Claus R. Bartram; Bernd Arnold; Angelika Bierhaus; U. Oppermann; Herbert Steinbeisser; Johannes Zschocke
Deficiency of the mitochondrial enzyme 2‐methyl‐3‐hydroxybutyryl‐CoA dehydrogenase involved in isoleucine metabolism causes an organic aciduria with atypical neurodegenerative course. The disease‐causing gene is HSD17B10 and encodes 17β‐hydroxysteroid dehydrogenase type 10 (HSD10), a protein also implicated in the pathogenesis of Alzheimers disease. Here we show that clinical symptoms in patients are not correlated with residual enzymatic activity of mutated HSD10. Loss‐of‐function and rescue experiments in Xenopus embryos and cells derived from conditional Hsd17b10−/− mice demonstrate that a property of HSD10 independent of its enzymatic activity is essential for structural and functional integrity of mitochondria. Impairment of this function in neural cells causes apoptotic cell death whilst the enzymatic activity of HSD10 is not required for cell survival. This finding indicates that the symptoms in patients with mutations in the HSD17B10 gene are unrelated to accumulation of toxic metabolites in the isoleucine pathway and, rather, related to defects in general mitochondrial function. Therefore alternative therapeutic approaches to an isoleucine‐restricted diet are required.
The EMBO Journal | 2006
Heiko Runz; Kota Miura; Matthias Weiss; Rainer Pepperkok
Alterations in endoplasmic reticulum (ER) cholesterol are fundamental for a variety of cellular processes such as the regulation of lipid homeostasis or efficient protein degradation. We show that reduced levels of cellular sterols cause a delayed ER‐to‐Golgi transport of the secretory cargo membrane protein ts‐O45‐G and a relocation to the ER of an endogenous protein cycling between the ER and the Golgi complex. Transport inhibition is characterized by a delay in the accumulation of ts‐O45‐G in ER‐exit sites (ERES) and correlates with a reduced mobility of ts‐O45‐G within ER membranes. A simple mathematical model describing the kinetics of ER‐exit predicts that reduced cargo loading to ERES and not the reduced mobility of ts‐O45‐G accounts for the delayed ER‐exit and arrival at the Golgi. Consistent with this, membrane turnover of the COPII component Sec23p is delayed in sterol‐depleted cells. Altogether, our results demonstrate the importance of sterol levels in COPII mediated ER‐export.