Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hein Imberechts is active.

Publication


Featured researches published by Hein Imberechts.


Microbial Drug Resistance | 2002

The AcrB Multidrug Transporter Plays a Major Role in High-Level Fluoroquinolone Resistance in Salmonella enterica Serovar Typhimurium Phage Type DT204

Sylvie Baucheron; Hein Imberechts; Elisabeth Chaslus-Dancla; Axel Cloeckaert

Salmonella enterica serovar Typhimurium phage type DT204 strains isolated from cattle and animal feed in Belgium were characterized for high-level fluoroquinolone resistance mechanisms [MICs to enrofloxacin (Enr) and ciprofloxacin (Cip), 64 and 32 microg/ml, respectively]. These strains isolated during the periods 1991-1994, and in 2000 were clonally related as shown by pulsed-field gel electrophoresis (PFGE). Selected strains studied carried several mutations in the quinolone target genes, i.e., a double mutation in the quinolone resistance-determining region (QRDR) of gyrA leading to amino acid changes Ser83Ala and Asp87Asn, a single mutation in the QRDR of gyrB leading to amino acid change Ser464Phe, and a single mutation in the QRDR of parC leading to amino acid change Ser80Ile. Moreover, Western blot analysis showed overproduction of the AcrA periplasmic protein belonging to the AcrAB-ToIC efflux system. This suggested active efflux as additional resistance mechanism resulting in a multiple antibiotic resistance (MAR) phenotype, which was measurable by an increased level of resistance to the structurally unrelated antibiotic florfenicol in the absence of the specific floR resistance gene. The importance of the AcrAB-TolC efflux system in high-level fluoroquinolone resistance was further confirmed by inactivating the acrB gene coding for the multidrug transporter. This resulted in a 32-fold reduction of resistance level to Enr (MIC = 2 microg/ml) and actually in a susceptible phenotype according to clinical breakpoints. Thus, AcrB plays a major role in high-level fluoroquinolone resistance, even when multiple target gene mutations are present. The same effect was obtained using the recently identified efflux pump inhibitor (EPI) Phe-Arg-naphthylamide also termed MC207,110. Among several fluoroquinolones tested in combination with EPI, the MIC of Enr was reduced most significantly. Thus, using EPI together with fluoroquinolones such as Enr may be promising in combination therapy against high-level fluoroquinolone-resistant S. enterica serovar Typhimurium.


International Journal of Environmental Research and Public Health | 2013

Antimicrobial Resistance in the Food Chain: A Review

Claire Verraes; Sigrid Van Boxstael; Eva Van Meervenne; Els Van Coillie; Patrick Butaye; Boudewijn Catry; Marie-Athénaïs de Schaetzen; Xavier Van Huffel; Hein Imberechts; Katelijne Dierick; Georges Daube; Claude Saegerman; Jan De Block; Jeroen Dewulf; Lieve Herman

Antimicrobial resistant zoonotic pathogens present on food constitute a direct risk to public health. Antimicrobial resistance genes in commensal or pathogenic strains form an indirect risk to public health, as they increase the gene pool from which pathogenic bacteria can pick up resistance traits. Food can be contaminated with antimicrobial resistant bacteria and/or antimicrobial resistance genes in several ways. A first way is the presence of antibiotic resistant bacteria on food selected by the use of antibiotics during agricultural production. A second route is the possible presence of resistance genes in bacteria that are intentionally added during the processing of food (starter cultures, probiotics, bioconserving microorganisms and bacteriophages). A last way is through cross-contamination with antimicrobial resistant bacteria during food processing. Raw food products can be consumed without having undergone prior processing or preservation and therefore hold a substantial risk for transfer of antimicrobial resistance to humans, as the eventually present resistant bacteria are not killed. As a consequence, transfer of antimicrobial resistance genes between bacteria after ingestion by humans may occur. Under minimal processing or preservation treatment conditions, sublethally damaged or stressed cells can be maintained in the food, inducing antimicrobial resistance build-up and enhancing the risk of resistance transfer. Food processes that kill bacteria in food products, decrease the risk of transmission of antimicrobial resistance.


Journal of Clinical Microbiology | 2006

Clonal Emergence of Extended-Spectrum β-Lactamase (CTX-M-2)-Producing Salmonella enterica Serovar Virchow Isolates with Reduced Susceptibilities to Ciprofloxacin among Poultry and Humans in Belgium and France (2000 to 2003)

Sophie Bertrand; François-Xavier Weill; Axel Cloeckaert; Martine Vrints; Eric Mairiaux; Karine Praud; Katlijne Dierick; Christa Wildemauve; C. Godard; Patrick Butaye; Hein Imberechts; Patrick A. D. Grimont; Jean-Marc Collard

ABSTRACT Antibiotic treatment is not required in cases of Salmonella enterica gastroenteritis but is essential in cases of enteric fever or invasive salmonellosis or in immunocompromised patients. Although fluoroquinolones and extended-spectrum cephalosporins are the drugs of choice to treat invasive Salmonella, resistance to these antibiotics is increasing worldwide. During the period 2000 to 2003, 90 Salmonella enterica serovar Virchow poultry and poultry product isolates and 11 serovar Virchow human isolates were found to produce an extended-spectrum β-lactamase, CTX-M-2, concomitantly with a TEM-1 β-lactamase. The blaCTX-M-2 gene was located on a large conjugative plasmid (>100 kb). Pulsed-field gel electrophoresis indicated a clonal relationship between the poultry and human isolates. All these isolates displayed additional resistance to trimethoprim-sulfamethoxazole and tetracycline as well as a reduced susceptibility to ciprofloxacin (MICs of between 0.5 and 1 μg/ml). CTX-M-2-producing Salmonella with a reduced susceptibility to fluoroquinolones constitutes a major concern, since such strains could disseminate on a large scale and jeopardize classical antibiotic therapy in immunocompromised patients.


Antimicrobial Agents and Chemotherapy | 2007

Dissemination of an Extended-Spectrum-β-Lactamase blaTEM-52 Gene-Carrying IncI1 Plasmid in Various Salmonella enterica Serovars Isolated from Poultry and Humans in Belgium and France between 2001 and 2005

Axel Cloeckaert; Karine Praud; Benoît Doublet; Alessia Bertini; Alessandra Carattoli; Patrick Butaye; Hein Imberechts; Sophie Bertrand; Jean-Marc Collard; Guillaume Arlet; François-Xavier Weill

ABSTRACT We report here the dissemination of a conjugative IncI1 plasmid carrying blaTEM-52 on a Tn3 transposon conferring resistance to extended-spectrum cephalosporins in Salmonella enterica serovar Agona, Derby, Infantis, Paratyphi B dT+, and Typhimurium isolates from poultry and humans in Belgium and France from 2001 to 2005. The most prevalent serovar spreading this resistance was serovar Infantis.


Journal of Clinical Microbiology | 2005

Comparison of Five Repetitive-Sequence-Based PCR Typing Methods for Molecular Discrimination of Salmonella enterica Isolates

G. Rasschaert; Kurt Houf; Hein Imberechts; K. Grijspeerdt; L. De Zutter; Marc Heyndrickx

ABSTRACT Five repetitive-element PCR (rep-PCR) techniques [primer sets ERIC1R-ERIC2 and REP1R-REP2I and primers ERIC2, BOXA1R, and (GTG)5] were evaluated for the discrimination of Salmonella enterica isolates at the serotype level. On the basis of number, even distribution over the whole fingerprint, and clarity of bands in the fingerprints, the enterobacterial repetitive intergenic consensus (ERIC) primer set and the (GTG)5 primer were chosen for use in the following experiments. For these two primer sets, reproducibility was tested on different lysates of five selected serotypes of Salmonella in the same PCR by using three different PCR runs. Reproducibility was poor between different PCR runs but high within the same PCR run. Furthermore, 80 different serotypes and five isolates which were not typeable by serotyping were fingerprinted. All strains were typeable by the ERIC primer set and the (GTG)5 primer and generated unique fingerprints, except for some strains with incomplete antigenic codes. Finally, 55 genetically different strains belonging to 10 serotypes were fingerprinted to examine the genetic diversity of the rep-PCR within serotypes. This experiment showed that one serotype did not always correlate to only one ERIC or (GTG)5 fingerprint but that the fingerprint heterogeneity within a serotype was limited. In epidemiological studies, ERIC- and/or (GTG)5-PCR can be used to limit the number of strains that have to be serotyped. The reproducibility of isolates in one PCR run, the discriminatory power, and the genetic diversity (stability) of the fingerprint were similar for the Eric primer set and the (GTG)5 primer, so both are equally able to discriminate Salmonella serotypes.


Epidemiology and Infection | 2008

Drastic decrease of Salmonella Enteritidis isolated from humans in Belgium in 2005, shift in phage types and influence on foodborne outbreaks.

Jean-Marc Collard; Sophie Bertrand; Katelijne Dierick; C. Godard; Christa Wildemauwe; Katie Vermeersch; J. Duculot; F. Van Immerseel; Frank Pasmans; Hein Imberechts; C. Quinet

In Belgium, non-typhoidal salmonellosis and campylobacteriosis are the two most frequently reported foodborne illnesses. During 2005, a 71% decrease of Salmonella Enteritidis infections compared with the average annual number cases in the period 2000-2004 was recorded by the Belgian National Reference Centre for Salmonella and Shigella. After the peak of 1999, the total number of salmonellosis cases decreased gradually, with the exception of 2003 when an increase was again recorded due to the rise of isolates belonging to the serotype Enteritidis. PT4, the predominant phage type of serotype Enteriditis over recent years (except in 2003), became the second most prevalent phage type in 2005 after PT21. We present in this paper the epidemiology (incidence and trends) of human salmonellosis in Belgium and assess the role of the vaccination programme in layer flocks on the decline of the incidence of human salmonellosis and foodborne outbreaks due to S. Enteritidis.


Antimicrobial Agents and Chemotherapy | 2000

Occurrence of a Salmonella enterica Serovar Typhimurium DT104-Like Antibiotic Resistance Gene Cluster Including the floR Gene in S. enterica Serovar Agona

Axel Cloeckaert; Karim Sidi Boumedine; Géraldine Flaujac; Hein Imberechts; Inge D'Hooghe; Elisabeth Chaslus-Dancla

ABSTRACT Recently a chromosomal locus possibly specific for Salmonella enterica serovar Typhimurium DT104 has been reported that contains a multiple antibiotic resistance gene cluster. Evidence is provided that Salmonella enterica serovar Agona strains isolated from poultry harbor a similar gene cluster including the newly described floR gene, conferring cross-resistance to chloramphenicol and florfenicol.


International Journal of Food Microbiology | 2011

Detection and characterization of Salmonella in lairage, on pig carcasses and intestines in five slaughterhouses

E. De Busser; Dominiek Maes; Kurt Houf; Jeroen Dewulf; Hein Imberechts; Sophie Bertrand; L. De Zutter

In this study, conducted at five slaughterhouses, individual pigs were sampled and followed up from stunning to cooling down of the carcasses. In this way, Salmonella prevalence and possible risk points were described. At the lairage area, pens were sampled using overshoes. At stunning and bleeding, pigs were individually identified and subsequently swabs were taken of the oral cavity and the carcass after polishing, splitting and forced chilling. Additionally, duodenum, ileum, rectum and mesenteric lymph nodes were extracted and samples were taken of the scalding water. All samples were submitted to Salmonella isolation and Salmonella isolates were serotyped and genotyped by pulsed-field gel electrophoresis (PFGE). Of all samples taken (n = 1953), 14.1% were Salmonella positive. The prevalence of S. in the lairage area varied widely (from 0 to 100%) between the slaughterhouses. Of the sampled pigs (n = 226), 48.2% were positive in at least one sample. Statistical analysis revealed that the contamination of the lairage area was related to a higher amount of positive carcasses after polishing. Furthermore, the contamination of the carcasses after splitting and forced chilling was related to the contamination level of the carcass after polishing. A relation between the outer (carcass) contamination and the inner (gut content and lymph nodes) contamination of a pig could not be established. The predominant serotypes were S. Typhimurium (58.7%) and S. Derby (17.4%). Genotyping revealed 46 different PFGE profiles among the 276 Salmonella isolates. The same genotype at the lairage area as in the oral cavity of the pigs was found in 95%. The results indicate that the lairage area is a primary source of Salmonella in slaughter pigs and that carcass contamination originates from the environment rather than from the pig (inner contamination) itself. It further shows that slaughterhouses vary in their capability of dealing with Salmonella positive pigs. A slaughterhouse specific approach is needed, however, general guidelines should be provided to decrease the contamination level of the lairage area and the slaughter environment.


Antimicrobial Agents and Chemotherapy | 2004

Salmonella Genomic Island 1 Multidrug Resistance Gene Clusters in Salmonella enterica Serovar Agona Isolated in Belgium in 1992 to 2002

Benoît Doublet; Patrick Butaye; Hein Imberechts; David Boyd; Michael R. Mulvey; Elisabeth Chaslus-Dancla; Axel Cloeckaert

ABSTRACT Salmonella genomic island 1 (SGI1) harbors a multidrug resistance (MDR) gene cluster which is a complex class 1 integron. Variant SGI1 MDR gene clusters conferring different MDR profiles have also been identified in several Salmonella enterica serovars and classified as SGI1-A to -F. A retrospective study was undertaken to characterize MDR regions from serovar Agona strains harboring SGI1 isolated from poultry in Belgium between 1992 and 2002. A total of 171 serovar Agona strains, displaying resistance to at least one antibiotic, were studied for the presence of SGI1. SGI1 was detected in 94 serovar Agona strains. The most prevalent variant was SGI1-A (85%), which harbors within the SGI1 complex class 1 integron a common region (CR1) containing orf513, a putative transposase gene, adjacent to the dfrA10 trimethoprim resistance gene. A new variant SGI1 named SGI1-G was identified in two strains. It consisted of the pse-1 gene cassette, as in SGI1-B, but with additional insertion of the orf513/dfrA10 region structure. Seven strains displaying the typical SGI1 MDR profile (Ap Cm Ff Sm Sp Su Tc) showed genetic variation at the 3′ end of SGI1. These strains harbored the insertion of the CR1 containing orf513 as in SGI1-A, -D, and -G. However, downstream the right end of CR1, they presented different 7.4- to 8.5-kb deletions of the SGI1 3′ end that extended to the chromosomal genes yieE and yieF. These results suggest a possible role of CR1 in deletion formation, as has been reported for some insertion sequences. Pulsed-field gel electrophoresis analysis showed that all the serovar Agona SGI1-carrying strains belonged to a single clone. Thus, SGI1 is largely encountered in serovar Agona strains isolated from poultry in Belgium, the most prevalent variant being SGI1-A. SGI1 MDR region undergoes recombinational events resulting in a diversity of MDR gene clusters.


International Journal of Food Microbiology | 2008

Evaluation of the Premi Test Salmonella, a commercial low-density DNA microarray system intended for routine identification and typing of Salmonella enterica.

Pierre Wattiau; Thijs Weijers; Peter Andreoli; Christine Schliker; Heidi Vander Veken; Henny M.E. Maas; Anjo Verbruggen; Max Heck; Wim J B Wannet; Hein Imberechts; Pieter Vos

A new commercial system based on genetic profiling and aimed at identifying Salmonella enterica serovars was evaluated by comparing its performance with classical serotyping on 443 strains. Within 62 serovars represented, 60 gave unique genetic profiles while 2 were undistinguishable. Results were obtained within 8 h, were reproducible and clear-cut. The system allowed single-tube processing of the samples and required no peculiar technical skill. It showed interesting potential for routine laboratory testing.

Collaboration


Dive into the Hein Imberechts's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Pohl

University of Zurich

View shared research outputs
Top Co-Authors

Avatar

Dirk Berkvens

Institute of Tropical Medicine Antwerp

View shared research outputs
Researchain Logo
Decentralizing Knowledge