Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heiner Kuhl is active.

Publication


Featured researches published by Heiner Kuhl.


Nature | 2011

The genome sequence of Atlantic cod reveals a unique immune system

Bastiaan Star; Sissel Jentoft; Unni Grimholt; Martin Malmstrøm; Tone F. Gregers; Trine B. Rounge; Jonas Paulsen; Monica Hongrø Solbakken; Animesh Sharma; Ola F. Wetten; Anders Lanzén; Roger Winer; James Knight; Jan-Hinnerk Vogel; Bronwen Aken; Øivind Andersen; Karin Lagesen; Ave Tooming-Klunderud; Rolf B. Edvardsen; Kirubakaran G. Tina; Mari Espelund; Chirag Nepal; Christopher Previti; Bård Ove Karlsen; Truls Moum; Morten Skage; Paul R. Berg; Tor Gjøen; Heiner Kuhl; Jim Thorsen

Atlantic cod (Gadus morhua) is a large, cold-adapted teleost that sustains long-standing commercial fisheries and incipient aquaculture. Here we present the genome sequence of Atlantic cod, showing evidence for complex thermal adaptations in its haemoglobin gene cluster and an unusual immune architecture compared to other sequenced vertebrates. The genome assembly was obtained exclusively by 454 sequencing of shotgun and paired-end libraries, and automated annotation identified 22,154 genes. The major histocompatibility complex (MHC) II is a conserved feature of the adaptive immune system of jawed vertebrates, but we show that Atlantic cod has lost the genes for MHC II, CD4 and invariant chain (Ii) that are essential for the function of this pathway. Nevertheless, Atlantic cod is not exceptionally susceptible to disease under natural conditions. We find a highly expanded number of MHC I genes and a unique composition of its Toll-like receptor (TLR) families. This indicates how the Atlantic cod immune system has evolved compensatory mechanisms in both adaptive and innate immunity in the absence of MHC II. These observations affect fundamental assumptions about the evolution of the adaptive immune system and its components in vertebrates.


Nature Biotechnology | 2005

Genome sequence of the chlorinated compound–respiring bacterium Dehalococcoides species strain CBDB1

Michael Kube; Alfred Beck; Stephen H. Zinder; Heiner Kuhl; Richard Reinhardt; Lorenz Adrian

Dehalococcoides species are strictly anaerobic bacteria, which catabolize many of the most toxic and persistent chlorinated aromatics and aliphatics by reductive dechlorination and are used for in situ bioremediation of contaminated sites. Our sequencing of the complete 1,395,502 base pair genome of Dehalococcoides strain CBDB1 has revealed the presence of 32 reductive-dehalogenase-homologous (rdh) genes, possibly conferring on the bacteria an immense dehalogenating potential. Most rdh genes were associated with genes encoding transcription regulators such as two-component regulatory systems or transcription regulators of the MarR-type. Four new paralog groups of rdh-associated genes without known function were detected. Comparison with the recently sequenced genome of Dehalococcoides ethenogenes strain 195 reveals a high degree of gene context conservation (synteny) but exceptionally high plasticity in all regions containing rdh genes, suggesting that these regions are under intense evolutionary pressure.


American Journal of Human Genetics | 2008

DNAI2 Mutations Cause Primary Ciliary Dyskinesia with Defects in the Outer Dynein Arm

Niki T. Loges; Heike Olbrich; Lale Fenske; Huda Mussaffi; Judit Horvath; Manfred Fliegauf; Heiner Kuhl; György Baktai; Rahul Chodhari; Eddie M. K. Chung; Andrew Rutman; Christopher O'Callaghan; Hannah Blau; László Tiszlavicz; Katarzyna Voelkel; Michał Witt; Ewa Ziętkiewicz; Juergen Neesen; Richard Reinhardt; Hannah M. Mitchison; Heymut Omran

Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder characterized by chronic destructive airway disease and randomization of left/right body asymmetry. Males often have reduced fertility due to impaired sperm tail function. The complex PCD phenotype results from dysfunction of cilia of the airways and the embryonic node and the structurally related motile sperm flagella. This is associated with underlying ultrastructural defects that frequently involve the outer dynein arm (ODA) complexes that generate cilia and flagella movement. Applying a positional and functional candidate-gene approach, we identified homozygous loss-of-function DNAI2 mutations (IVS11+1G > A) in four individuals from a family with PCD and ODA defects. Further mutational screening of 105 unrelated PCD families detected two distinct homozygous mutations, including a nonsense (c.787C > T) and a splicing mutation (IVS3-3T > G) resulting in out-of-frame transcripts. Analysis of protein expression of the ODA intermediate chain DNAI2 showed sublocalization throughout respiratory cilia. Electron microscopy showed that mutant respiratory cells from these patients lacked DNAI2 protein expression and exhibited ODA defects. High-resolution immunofluorescence imaging demonstrated absence of the ODA heavy chains DNAH5 and DNAH9 from all DNAI2 mutant ciliary axonemes. In addition, we demonstrated complete or distal absence of DNAI2 from ciliary axonemes in respiratory cells of patients with mutations in genes encoding the ODA chains DNAH5 and DNAI1, respectively. Thus, DNAI2 and DNAH5 mutations affect assembly of proximal and distal ODA complexes, whereas DNAI1 mutations mainly disrupt assembly of proximal ODA complexes.


Nature Genetics | 2008

SNP and haplotype mapping for genetic analysis in the rat.

Katrin Saar; Alfred Beck; Mt Bihoreau; Ewan Birney; Yuan Chen; Edwin Cuppen; S Demonchy; Joaquín Dopazo; Paul Flicek; Mario Foglio; Asao Fujiyama; Ivo Gut; Dominique Gauguier; R Guigo; Guryev; Matthias Heinig; Oliver Hummel; Niels Jahn; Sven Klages; Kren; Michael Kube; Heiner Kuhl; Takashi Kuramoto; Yoko Kuroki; Doris Lechner; Ya Lee; Nuria Lopez-Bigas; Gm Lathrop; Tomoji Mashimo; Ignacio Medina

The laboratory rat is one of the most extensively studied model organisms. Inbred laboratory rat strains originated from limited Rattus norvegicus founder populations, and the inherited genetic variation provides an excellent resource for the correlation of genotype to phenotype. Here, we report a survey of genetic variation based on almost 3 million newly identified SNPs. We obtained accurate and complete genotypes for a subset of 20,238 SNPs across 167 distinct inbred rat strains, two rat recombinant inbred panels and an F2 intercross. Using 81% of these SNPs, we constructed high-density genetic maps, creating a large dataset of fully characterized SNPs for disease gene mapping. Our data characterize the population structure and illustrate the degree of linkage disequilibrium. We provide a detailed SNP map and demonstrate its utility for mapping of quantitative trait loci. This community resource is openly available and augments the genetic tools for this workhorse of physiological studies.


Nature Communications | 2014

European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation

Mbaye Tine; Heiner Kuhl; Pierre-Alexandre Gagnaire; Bruno Louro; Erick Desmarais; Rute S.T. Martins; Jochen Hecht; Florian Knaust; Khalid Belkhir; Sven Klages; Roland Dieterich; Kurt Stueber; Francesc Piferrer; Bruno Guinand; Nicolas Bierne; Filip Volckaert; Luca Bargelloni; Deborah M. Power; François Bonhomme; Adelino V. M. Canario; Richard Reinhardt

The European sea bass (Dicentrarchus labrax) is a temperate-zone euryhaline teleost of prime importance for aquaculture and fisheries. This species is subdivided into two naturally hybridizing lineages, one inhabiting the north-eastern Atlantic Ocean and the other the Mediterranean and Black seas. Here we provide a high-quality chromosome-scale assembly of its genome that shows a high degree of synteny with the more highly derived teleosts. We find expansions of gene families specifically associated with ion and water regulation, highlighting adaptation to variation in salinity. We further generate a genome-wide variation map through RAD-sequencing of Atlantic and Mediterranean populations. We show that variation in local recombination rates strongly influences the genomic landscape of diversity within and differentiation between lineages. Comparing predictions of alternative demographic models to the joint allele-frequency spectrum indicates that genomic islands of differentiation between sea bass lineages were generated by varying rates of introgression across the genome following a period of geographical isolation.


Stem Cells | 2011

Human induced pluripotent stem cells harbor homoplasmic and heteroplasmic mitochondrial DNA mutations while maintaining human embryonic stem cell-like metabolic reprogramming

Alessandro Prigione; Björn Lichtner; Heiner Kuhl; Eduard A. Struys; Mirjam M. C. Wamelink; Hans Lehrach; Markus Ralser; Bernd Timmermann; James Adjaye

Human induced pluripotent stem cells (iPSCs) have been recently found to harbor genomic alterations. However, the integrity of mitochondrial DNA (mtDNA) within reprogrammed cells has yet to be investigated. mtDNA mutations occur at a high rate and contribute to the pathology of a number of human disorders. Furthermore, the lack of mtDNA integrity may alter cellular bioenergetics and limit efficient differentiation. We demonstrated previously that the derivation of iPSCs is associated with mitochondrial remodeling and a metabolic switch towards glycolysis. Here, we have discovered that alterations of mtDNA can occur upon the induction of pluripotency. Massively parallel pyrosequencing of mtDNA revealed that human iPSCs derived from young healthy donors harbored single base mtDNA mutations (substitutions, insertions, and deletions), both homoplasmic (in all mtDNA molecules) and heteroplasmic (in a fraction of mtDNAs), not present in the parental cells. mtDNA modifications were mostly common variants and not disease related. Moreover, iPSC lines bearing different mtDNA mutational loads maintained a consistent human embryonic stem cell–like reprogramming of energy metabolism. This involved the upregulation of glycolytic enzymes, increased glucose‐6‐phosphate levels, and the over‐expression of pyruvate dehydrogenase kinase 1 protein, which reroutes the bioenergetic flux toward glycolysis. Hence, mtDNA mutations within iPSCs may not necessarily impair the correct establishment of pluripotency and the associated metabolic reprogramming. Nonetheless, the occurrence of pathogenic mtDNA modifications might be an important aspect to monitor when characterizing iPSC lines. Finally, we speculate that this random rearrangement of mtDNA molecules might prove beneficial for the derivation of mutation‐free iPSCs from patients with mtDNA disorders. STEM CELLS 2011; 29:1338–1348


Environmental Microbiology | 2008

The genome of Erwinia tasmaniensis strain Et1/99, a non-pathogenic bacterium in the genus Erwinia

Michael Kube; Alexander Michael Migdoll; Ines Müller; Heiner Kuhl; Alfred Beck; Richard Reinhardt; Klaus Geider

The complete genome of the bacterium Erwinia tasmaniensis strain Et1/99 consisting of a 3.9 Mb circular chromosome and five plasmids was sequenced. Strain Et1/99 represents an epiphytic plant bacterium related to Erwinia amylovora and E. pyrifoliae, which are responsible for the important plant diseases fire blight and Asian pear shoot blight, respectively. Strain Et1/99 is a non-pathogenic bacterium and is thought to compete with these and other bacteria when occupying the same habitat during initial colonization. Genome analysis revealed tools for colonization, cellular communication and defence modulation, as well as genes coding for the synthesis of levan and a not detected capsular exopolysaccharide. Strain Et1/99 may secrete indole-3-acetic acid to increase availability of nutrients provided on plant surfaces. These nutrients are subsequently accessed and metabolized. Secretion systems include the hypersensitive response type III pathway present in many pathogens. Differences or missing parts within the virulence-related factors distinguish strain Et1/99 from pathogens such as Pectobacterium atrosepticum and the related Erwinia spp. Strain Et1/99 completely lacks the sorbitol operon, which may also affect its inability to invade fire blight host plants. Erwinia amylovora in contrast depends for virulence on utilization of sorbitol, the dominant carbohydrate in rosaceous plants. The presence of other virulence-associated factors in strain Et1/99 indicates the ancestral genomic background of many plant-associated bacteria.


BMC Genomics | 2010

Genome comparison of the epiphytic bacteria Erwinia billingiae and E. tasmaniensis with the pear pathogen E. pyrifoliae

Michael Kube; Alexander Michael Migdoll; Isabel Gehring; Katja Heitmann; Yvonne Mayer; Heiner Kuhl; Florian Knaust; Klaus Geider; Richard Reinhardt

BackgroundThe genus Erwinia includes plant-associated pathogenic and non-pathogenic Enterobacteria. Important pathogens such as Erwinia amylovora, the causative agent of fire blight and E. pyrifoliae causing bacterial shoot blight of pear in Asia belong to this genus. The species E. tasmaniensis and E. billingiae are epiphytic bacteria and may represent antagonists for biocontrol of fire blight. The presence of genes that are putatively involved in virulence in E. amylovora and E. pyrifoliae is of special interest for these species in consequence.ResultsHere we provide the complete genome sequences of the pathogenic E. pyrifoliae strain Ep1/96 with a size of 4.1 Mb and of the non-pathogenic species E. billingiae strain Eb661 with a size of 5.4 Mb, de novo determined by conventional Sanger sequencing and next generation sequencing techniques. Genome comparison reveals large inversions resulting from homologous recombination events. Furthermore, comparison of deduced proteins highlights a relation of E. billingiae strain Eb661 to E. tasmaniensis strain Et1/99 and a distance to E. pyrifoliae for the overall gene content as well as for the presence of encoded proteins representing virulence factors for the pathogenic species. Pathogenicity of E. pyrifoliae is supposed to have evolved by accumulation of potential virulence factors. E. pyrifoliae carries factors for type III secretion and cell invasion. Other genes described as virulence factors for E. amylovora are involved in the production of exopolysaccharides, the utilization of plant metabolites such as sorbitol and sucrose. Some virulence-associated genes of the pathogenic species are present in E. tasmaniensis but mostly absent in E. billingiae.ConclusionThe data of the genome analyses correspond to the pathogenic lifestyle of E. pyrifoliae and underlines the epiphytic localization of E. tasmaniensis and E. billingiae as a saprophyte .


BMC Genomics | 2010

The European sea bass Dicentrarchus labrax genome puzzle: comparative BAC-mapping and low coverage shotgun sequencing

Heiner Kuhl; Alfred Beck; Grzegorz Wozniak; Adelino V. M. Canario; Filip Volckaert; Richard Reinhardt

BackgroundFood supply from the ocean is constrained by the shortage of domesticated and selected fish. Development of genomic models of economically important fishes should assist with the removal of this bottleneck. European sea bass Dicentrarchus labrax L. (Moronidae, Perciformes, Teleostei) is one of the most important fishes in European marine aquaculture; growing genomic resources put it on its way to serve as an economic model.ResultsEnd sequencing of a sea bass genomic BAC-library enabled the comparative mapping of the sea bass genome using the three-spined stickleback Gasterosteus aculeatus genome as a reference. BAC-end sequences (102,690) were aligned to the stickleback genome. The number of mappable BACs was improved using a two-fold coverage WGS dataset of sea bass resulting in a comparative BAC-map covering 87% of stickleback chromosomes with 588 BAC-contigs. The minimum size of 83 contigs covering 50% of the reference was 1.2 Mbp; the largest BAC-contig comprised 8.86 Mbp. More than 22,000 BAC-clones aligned with both ends to the reference genome. Intra-chromosomal rearrangements between sea bass and stickleback were identified. Size distributions of mapped BACs were used to calculate that the genome of sea bass may be only 1.3 fold larger than the 460 Mbp stickleback genome.ConclusionsThe BAC map is used for sequencing single BACs or BAC-pools covering defined genomic entities by second generation sequencing technologies. Together with the WGS dataset it initiates a sea bass genome sequencing project. This will allow the quantification of polymorphisms through resequencing, which is important for selecting highly performing domesticated fish.


Genome Research | 2008

Retroposed SNOfall—A mammalian-wide comparison of platypus snoRNAs

Jürgen Schmitz; Anja Zemann; Gennady Churakov; Heiner Kuhl; Frank Grützner; Richard Reinhardt; Jürgen Brosius

Diversification of mammalian species began more than 160 million years ago when the egg-laying monotremes diverged from live bearing mammals. The duck-billed platypus (Ornithorhynchus anatinus) and echidnas are the only potential contemporary witnesses of this period and, thereby, provide a unique insight into mammalian genome evolution. It has become clear that small RNAs are major regulatory agents in eukaryotic cells, and the significant role of non-protein-coding (npc) RNAs in transcription, processing, and translation is now well accepted. Here we show that the platypus genome contains more than 200 small nucleolar (sno) RNAs among hundreds of other diverse npcRNAs. Their comparison among key mammalian groups and other vertebrates enabled us to reconstruct a complete temporal pathway of acquisition and loss of these snoRNAs. In platypus we found cis- and trans-duplication distribution patterns for snoRNAs, which have not been described in any other vertebrates but are known to occur in nematodes. An exciting novelty in platypus is a snoRNA-derived retroposon (termed snoRTE) that facilitates a very effective dispersal of an H/ACA snoRNA via RTE-mediated retroposition. From more than 40,000 detected full-length and truncated genomic copies of this snoRTE, at least 21 are processed into mature snoRNAs. High-copy retroposition via multiple host gene-promoted transcription units is a novel pathway for combining housekeeping function and SINE-like dispersal and reveals a new dimension in the evolution of novel snoRNA function.

Collaboration


Dive into the Heiner Kuhl's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Kube

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge