Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heini Kujala is active.

Publication


Featured researches published by Heini Kujala.


PLOS ONE | 2013

Conservation planning with uncertain climate change projections.

Heini Kujala; Aatte Moilanen; Miguel B. Araújo; Mar Cabeza

Climate change is affecting biodiversity worldwide, but conservation responses are constrained by considerable uncertainty regarding the magnitude, rate and ecological consequences of expected climate change. Here we propose a framework to account for several sources of uncertainty in conservation prioritization. Within this framework we account for uncertainties arising from (i) species distributions that shift following climate change, (ii) basic connectivity requirements of species, (iii) alternative climate change scenarios and their impacts, (iv) in the modelling of species distributions, and (v) different levels of confidence about present and future. When future impacts of climate change are uncertain, robustness of decision-making can be improved by quantifying the risks and trade-offs associated with climate scenarios. Sensible prioritization that accounts simultaneously for the present and potential future distributions of species is achievable without overly jeopardising present-day conservation values. Doing so requires systematic treatment of uncertainties and testing of the sensitivity of results to assumptions about climate. We illustrate the proposed framework by identifying priority areas for amphibians and reptiles in Europe.


Conservation Biology | 2010

Costs of Integrating Economics and Conservation Planning

Anni Arponen; Mar Cabeza; Johanna Eklund; Heini Kujala; Joona Lehtomäki

Recent literature on systematic conservation planning has focused strongly on economics. It is a necessary component of efficient conservation planning because the question is about effective resource allocation. Nevertheless, there is an increasing tendency toward economic factors overriding biological considerations. Focusing too narrowly on economic cost may lead us back toward solutions resembling those obtained by opportunistic choice of areas, the avoidance of which was the motivation for development of systematic approaches. Moreover, there are many overlooked difficulties in incorporating economic considerations reliably into conservation planning because available economic data and the free market are complex. For instance, economies based on free markets tend to be shortsighted, whereas biodiversity conservation aims far into the future. Although economic data are necessary, they should not be relied on too heavily or considered separately from other sociopolitical factors. We suggest focusing on development of more-comprehensive ecological-economic modeling, while not forgetting the importance of purely biological analyses that are needed as a point of reference for evaluating conservation outcomes.


Philosophical Transactions of the Royal Society B | 2015

Phylogenetic diversity meets conservation policy: Small areas are key to preserving eucalypt lineages

Laura J. Pollock; Dan F. Rosauer; Andrew H. Thornhill; Heini Kujala; Michael D. Crisp; Joseph T. Miller; Michael A. McCarthy

Evolutionary and genetic knowledge is increasingly being valued in conservation theory, but is rarely considered in conservation planning and policy. Here, we integrate phylogenetic diversity (PD) with spatial reserve prioritization to evaluate how well the existing reserve system in Victoria, Australia captures the evolutionary lineages of eucalypts, which dominate forest canopies across the state. Forty-three per cent of remaining native woody vegetation in Victoria is located in protected areas (mostly national parks) representing 48% of the extant PD found in the state. A modest expansion in protected areas of 5% (less than 1% of the state area) would increase protected PD by 33% over current levels. In a recent policy change, portions of the national parks were opened for development. These tourism development zones hold over half the PD found in national parks with some species and clades falling entirely outside of protected zones within the national parks. This approach of using PD in spatial prioritization could be extended to any clade or area that has spatial and phylogenetic data. Our results demonstrate the relevance of PD to regional conservation policy by highlighting that small but strategically located areas disproportionally impact the preservation of evolutionary lineages.


Conservation Biology | 2007

Conservation planning in forest landscapes of Fennoscandia and an approach to the challenge of Countdown 2010

Grzegorz Mikusiński; Robert L. Pressey; L. Edenius; Heini Kujala; Atte Moilanen; Jari Niemelä; T. Ranius

Effective management of biodiversity in production landscapes requires a conservation approach that acknowledges the complexity of ecological and cultural systems in time and space. Fennoscandia has experienced major loss of forest biodiversity caused by intensive forestry. Therefore, the Countdown 2010 initiative to halt the loss of biodiversity in Europe is highly relevant to forest management in this part of the continent. As a contribution to meeting the challenge posed by Countdown 2010, we developed a spatially explicit conservation-planning exercise that used regional knowledge on forest biodiversity to provide support for managers attempting to halt further loss of biological diversity in the region. We used current data on the distribution of 169 species (including 68 red-listed species) representing different forest habitats and ecologies along with forest data within the frame of modern conservation software to devise a map of priority areas for conservation. The top 10% of priority areas contained over 75% of red-listed species locations and 41% of existing protected forest areas, but only 58% of these top priorities overlapped with core areas identified previously in a regional strategy that used more qualitative methods. We argue for aggregating present and future habitat value of single management units to landscape and regional scales to identify potential bottlenecks in habitat availability linked to landscape dynamics. To address the challenge of Countdown 2010, a general framework for forest conservation planning in Fennoscandia needs to cover different conservation issues, tools, and data needs.


Global Change Biology | 2013

Range margin shifts of birds revisited – the role of spatiotemporally varying survey effort

Heini Kujala; Ville Vepsäläinen; Benjamin Zuckerberg; Jon E. Brommer

Global climate warming is predicted to lead to global and regional changes in the distribution of organisms. One influential approach to test this prediction using temporally repeated mapping surveys of organisms was suggested in a seminal paper by Thomas & Lennon (1999, Nature). The Thomas & Lennon approach corrects observed changes in the range margin for changes in the range size, and thus potentially controls for other broad-scale environmental changes between surveys, however the approach does not necessarily account for potential biases in sampling effort. To verify whether the issue of variation in sampling effort affects empirical estimates of shifts in range margin, we reanalyzed all three published studies exploring range margin changes of breeding birds in Great Britain (GB), Finland, and New York State (NY). Accounting for changes in survey effort on range margins lowered the estimated shift for breeding birds in New York, but the shift remained statistically significant. For Great Britain and Finland, for which no direct estimate of survey effort is available, we used species richness (a strong correlate of survey effort in New York) as a proxy and found that in both cases the estimated shift in range margin was significantly reduced and became nonsignificant. To understand how robust the approach is to sampling biases, we use a simulation model to show that the Thomas & Lennon approach is, under certain conditions, sensitive to changes in detection probability (probability to detect true occupancy) which in turn may be affected by changes in surveying effort between surveys. We thus found evidence that temporal changes in the distribution of breeding birds based on repeated mapping surveys may be inflated by changes in survey effort along range boundaries. We discuss possible approaches to deal with this issue in the analysis and design of national or regional surveys.


Environmental Management | 2015

Guidelines for Using Movement Science to Inform Biodiversity Policy

Philip S. Barton; Pia E. Lentini; Erika Alacs; Sana Bau; Yvonne M. Buckley; Emma Burns; Don A. Driscoll; Lydia K. Guja; Heini Kujala; José J. Lahoz-Monfort; Alessio Mortelliti; Ran Nathan; Ross Rowe; Annabel L. Smith

Substantial advances have been made in our understanding of the movement of species, including processes such as dispersal and migration. This knowledge has the potential to improve decisions about biodiversity policy and management, but it can be difficult for decision makers to readily access and integrate the growing body of movement science. This is, in part, due to a lack of synthesis of information that is sufficiently contextualized for a policy audience. Here, we identify key species movement concepts, including mechanisms, types, and moderators of movement, and review their relevance to (1) national biodiversity policies and strategies, (2) reserve planning and management, (3) threatened species protection and recovery, (4) impact and risk assessments, and (5) the prioritization of restoration actions. Based on the review, and considering recent developments in movement ecology, we provide a new framework that draws links between aspects of movement knowledge that are likely the most relevant to each biodiversity policy category. Our framework also shows that there is substantial opportunity for collaboration between researchers and government decision makers in the use of movement science to promote positive biodiversity outcomes.


Biodiversity and Conservation | 2013

Does the protected area network preserve bird species of conservation concern in a rapidly changing climate

Raimo Virkkala; Risto K. Heikkinen; Stefan Fronzek; Heini Kujala; Niko Leikola

Species ranges are expected to move polewards following the changing climate, which poses novel challenges to the protected area network, particularly at northern latitudes. Here we study how well protected areas are likely to sustain populations of birds of conservation concern under a changing climate in northern Europe, in Finland. We fitted bioclimatic envelope models generated for 100 bird species to climate scenario data for the years 2051–2080 and three alternative emission scenarios in a 10-km grid system to predict changes in the species probability of occurrence. We related the projected changes in the climatic suitability to the amount of protected preferred habitat for the study species in the 10-km grid cells, and based on the cover of four main CORINE Land Cover classes in each conservation area in Finland. The probability of occurrence of all species (except marshland birds) decreased according to all scenarios, the decline being greatest in southern and smallest in northern boreal zones. This decline was slightly greater in unprotected than in protected areas for species of forests, mires and mountain habitats. The climatically suitable areas for the species were predicted to shift northwards, but the potential gain of southern species of conservation concern appears not to compensate for the loss of northern species. Thus, a representative protected area network is needed in all boreal zones. Overall, our results show that species-specific habitat preferences and habitat availability should be taken into account when assessing the efficiency of a protected area network in a changing climate.


Methods in Ecology and Evolution | 2017

Spatial characteristics of species distributions as drivers in conservation prioritization

Heini Kujala; Atte Moilanen; Ascelin Gordon

Spatial prioritization, based on the biogeographical identification of priority areas for conservation actions, is an important aspect of conservation planning. Although the influence of factors such as costs, threats or use of surrogates on the resulting priorities has been studied extensively, relatively little is known about how the spatial characteristics of species distributions drive the spatial pattern of priorities in multi-species conservation plans. Using datasets from Australia and Finland, we explore how excluding or including a given species changes spatial priorities in a multi-species prioritization. We develop three metrics to quantify changes in priorities, and explore how these changes depend on the total number of species used in the prioritization, the spatial characteristics of the given species distribution, and how species share their space with other species used in the prioritization. We randomly selected 12 set of 10 species from each dataset, and explore the influence of each of these species in prioritizations done for a total of 10, 20, 50 or 100 species. We show that spatial priorities become increasingly stable as the number of species is increased, and that the stability of highest and lowest priority areas behave differently. When less than 50 species were used in a prioritization, intermediately rare species that occupy mostly species-poor habitats tend to have the greatest influence on priorities, whereas very rare and common species that co-occur with many other species tend to have a small influence. Our results present a systematic method to explore the stability of spatial priorities to changes in the species pool used for a conservation plan. Although the analysed two datasets differed in data type, location, scale and species composition, they both showed how using a small number of species leads to unstable spatial solutions, where the choice to include or exclude an individual species can strongly influence the conservation outcome. Our results also show that conservation planners should carefully assess the use of spatial prioritizations for identifying least important areas (e.g. for development) as these can be particularly unstable when the prioritization is based on a small number of species.


Methods in Ecology and Evolution | 2018

Not all data are equal: Influence of data type and amount in spatial conservation prioritisation

Heini Kujala; José J. Lahoz-Monfort; Jane Elith; Atte Moilanen

Handling Editor: Andrés Lopez-Sepulcre Abstract 1. Decisions about land use significantly influence biodiversity globally. The field of spatial conservation prioritisation explores allocation of conservation effort, including for reserve network expansion, targeting habitat restoration, or minimising ecological impacts of development. Inevitably, the utility of such planning depends on the quantity and quality input data, including spatial information on biodiversity, threats, and cost of action. In this work we systematically develop understanding about the significance of these different data types in spatial conservation prioritisation. 2. We clarify the common ways different data types enter an analysis, develop mathematical models to understand the effects of data in spatial prioritisation, and survey literature to establish typical quantities of different types of data used. We use Jackknife analysis to derive the expected change in site values, when a single new data layer is added to a prioritisation. We validate mathematical formulae for expected impacts using simulations. 3. A survey of scientific literature reveals that typical spatial prioritisation analyses include hundreds of biodiversity feature layers (species, habitat types, ecosystem services), but the count of cost, threat or habitat condition layers is typically 0–5. Due to these differences, and the mathematical formulations commonly used to combine data types, the influence of a single cost, threat, or habitat condition data layer can be an order or two higher than the influence of a single biodiversity feature layer. In a classical cost-effectiveness formulation (benefits divided by costs, B/C) the influence of a single cost layer can even be as large as the joint influence of thousands of species distributions. We also clarify how changes in data impact site values and spatial priority rankings differently, with the latter being further influenced by data correlations, the spread of numeric values inside data layers and other data characteristics. For example, costs influence priorities significantly if cost is positively correlated with biodiversity, but the correlation is the other way around for biodiversity and habitat condition. 4. This work helps conservation practitioners to direct efforts when collating data for spatial conservation planning. It also helps decision makers understand where to focus attention when interpreting conservation plans and their uncertainties.


Landscape Ecology | 2018

Planning for the future: identifying conservation priority areas for Iberian birds under climate change

María Triviño; Heini Kujala; Miguel B. Araújo; Mar Cabeza

ContextSpecies are expected to shift their distributions in response to global environmental changes and additional protected areas are needed to encompass the corresponding changes in the distributions of their habitats. Conservation policies are likely to become obsolete unless they integrate the potential impacts of climate and land-use change on biodiversity.ObjectivesWe identify conservation priority areas for current and future projected distributions of Iberian bird species. We then investigate the extent to which global change informed priority areas are: (i) covered by existing protected area networks (national protected areas and Natura 2000); (ii) threatened by agricultural or urban land-use changes.MethodsWe use outputs of species distributions models fitted with climatic data as inputs in spatial prioritization tools to identify conservation priority areas for 168 bird species. We use projections of land-use change to then discriminate between threatened and non-threatened priority areas.Results19% of the priority areas for birds are covered by national protected areas and 23% are covered by Natura 2000 sites. The spatial mismatch between protected area networks and priority areas for birds is projected to increase with climate change. But there are opportunities to improve the protection of birds under climate change, as half of the priority areas are currently neither protected nor in conflict with urban or agricultural land-uses.ConclusionsWe identify critical areas for bird conservation both under current and climate change conditions, and propose that they could guide the establishment of new conservation areas across the Iberian Peninsula complementing existing protected areas.

Collaboration


Dive into the Heini Kujala's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mar Cabeza

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Atte Moilanen

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miguel B. Araújo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge