Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heinrich M. Jaeger is active.

Publication


Featured researches published by Heinrich M. Jaeger.


Science | 1992

Physics of the granular state.

Heinrich M. Jaeger; Sidney R. Nagel

Granular materials display a variety of behaviors that are in many ways different from those of other substances. They cannot be easily classified as either solids or liquids. This has prompted the generation of analogies between the physics found in a simple sandpile and that found in complicated microscopic systems, such as flux motion in superconductors or spin glasses. Recently, the unusual behavior of granular systems has led to a number of new theories and to a new era of experimentation on granular systems.


Nature | 2001

Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds

Ward Antone Lopes; Heinrich M. Jaeger

Self-assembly is emerging as an elegant, ‘bottom-up’ method for fabricating nanostructured materials. This approach becomes particularly powerful when the ease and control offered by the self-assembly of organic components is combined with the electronic, magnetic or photonic properties of inorganic components. Here we demonstrate a versatile hierarchical approach for the assembly of organic–inorganic, copolymer–metal nanostructures in which one level of self-assembly guides the next. In a first step, ultrathin diblock copolymer films form a regular scaffold of highly anisotropic, stripe-like domains. During a second assembly step, differential wetting guides diffusing metal atoms to aggregate selectively along the scaffold, producing highly organized metal nanostructures. We find that, in contrast to the usual requirement of near-equilibrium conditions for ordering, the metal arranged on the copolymer scaffold produces the most highly ordered configurations when the system is far from equilibrium. We delineate two distinct assembly modes of the metal component—chains of separate nanoparticles and continuous wires—each characterized by different ordering kinetics and strikingly different current–voltage characteristics. These results therefore demonstrate the possibility of guided, large-scale assembly of laterally nanostructured systems.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition

Thomas Scheibel; Raghuveer Parthasarathy; George J. Sawicki; Xiao-Min Lin; Heinrich M. Jaeger; Susan Lindquist

Recent research in the field of nanometer-scale electronics has focused on the operating principles of small-scale devices and schemes to realize useful circuits. In contrast to established “top-down” fabrication techniques, molecular self-assembly is emerging as a “bottom-up” approach for fabricating nanostructured materials. Biological macromolecules, especially proteins, provide many valuable properties, but poor physical stability and poor electrical characteristics have prevented their direct use in electrical circuits. Here we describe the use of self-assembling amyloid protein fibers to construct nanowire elements. Self-assembly of a prion determinant from Saccharomyces cerevisiae, the N-terminal and middle region (NM) of Sup35p, produced 10-nm-wide protein fibers that were stable under a wide variety of harsh physical conditions. Their lengths could be roughly controlled by assembly conditions in the range of 60 nm to several hundred micrometers. A genetically modified NM variant that presents reactive, surface-accessible cysteine residues was used to covalently link NM fibers to colloidal gold particles. These fibers were placed across gold electrodes, and additional metal was deposited by highly specific chemical enhancement of the colloidal gold by reductive deposition of metallic silver and gold from salts. The resulting silver and gold wires were ≈100 nm wide. These biotemplated metal wires demonstrated the conductive properties of a solid metal wire, such as low resistance and ohmic behavior. With such materials it should be possible to harness the extraordinary diversity and specificity of protein functions to nanoscale electrical circuitry.


Science | 1996

Local control of microdomain orientation in diblock copolymer thin films with electric fields

Terry Lee Morkved; M. Lu; A. M. Urbas; E. E. Ehrichs; Heinrich M. Jaeger; Paul A. Mansky; Thomas P. Russell

Local control of the domain orientation in diblock copolymer thin films can be obtained by the application of electric fields on micrometer-length scales. Thin films of an asymmetric polystyrene-polymethylmethacrylate diblock copolymer, with cylindrical polymethylmethacrylate microdomains, were spin-coated onto substrates previously patterned with planar electrodes. The substrates, 100-nanometer-thick silicon nitride membranes, allow direct observation of the electrodes and the copolymer domain structure by transmission electron microscopy. The cylinders aligned parallel to the electric field lines for fields exceeding 30 kilovolts per centimeter, after annealing at 250°C in an inert atmosphere for 24 hours. This technique could find application in nanostructure fabrication.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Universal robotic gripper based on the jamming of granular material

Eric Brown; Nicholas Rodenberg; John R. Amend; Annan Mozeika; Erik Steltz; Mitchell R. Zakin; Hod Lipson; Heinrich M. Jaeger

Gripping and holding of objects are key tasks for robotic manipulators. The development of universal grippers able to pick up unfamiliar objects of widely varying shape and surface properties remains, however, challenging. Most current designs are based on the multifingered hand, but this approach introduces hardware and software complexities. These include large numbers of controllable joints, the need for force sensing if objects are to be handled securely without crushing them, and the computational overhead to decide how much stress each finger should apply and where. Here we demonstrate a completely different approach to a universal gripper. Individual fingers are replaced by a single mass of granular material that, when pressed onto a target object, flows around it and conforms to its shape. Upon application of a vacuum the granular material contracts and hardens quickly to pinch and hold the object without requiring sensory feedback. We find that volume changes of less than 0.5% suffice to grip objects reliably and hold them with forces exceeding many times their weight. We show that the operating principle is the ability of granular materials to transition between an unjammed, deformable state and a jammed state with solid-like rigidity. We delineate three separate mechanisms, friction, suction, and interlocking, that contribute to the gripping force. Using a simple model we relate each of them to the mechanical strength of the jammed state. This advance opens up new possibilities for the design of simple, yet highly adaptive systems that excel at fast gripping of complex objects.


Physical Review E | 1998

Force distribution in a granular medium

Daniel M. Mueth; Heinrich M. Jaeger; Sidney R. Nagel

We report on systematic measurements of the distribution of normal forces exerted by granular material under uniaxial compression onto the interior surfaces of a confining vessel. Our experiments on three-dimensional, random packings of monodisperse glass beads show that this distribution is nearly uniform for forces below the mean force and decays exponentially for forces greater than the mean. The shape of the distribution and the value of the exponential decay constant are unaffected by changes in the system preparation history or in the boundary conditions. An empirical functional form for the distribution is proposed that provides an excellent fit over the whole force range measured and is also consistent with recent computer simulation data.


Physics Today | 1996

The Physics of Granular Materials

Heinrich M. Jaeger; Sidney R. Nagel; Robert P. Behringer

Victor Hugo suggested the possibility that patterns created by the movement of grains of sand are in no small part responsible for the shape and feel of the natural world we live in. Certainly, granular materials, of which sand is but one example, are ubiquitous in our daily lives. They play an important role in industries, such as mining, agriculture and construction. They also are important in geological processes, such as landslides and erosion and, on a larger scale, plate tectonics, which determine much of Earths morphology. Practically everything we eat started out in a granular form and the clutter on our desks is often so close to the angle of repose that a chance perturbation can create an avalanche onto the floor.


Nature | 2000

Signatures of granular microstructure in dense shear flows

Daniel M. Mueth; Georges F. Debregeas; Greg S. Karczmar; Peter J. Eng; Sidney R. Nagel; Heinrich M. Jaeger

Granular materials and ordinary fluids react differently to shear stresses. Rather than deforming uniformly, materials such as dry sand or cohesionless powders develop shear bands—narrow zones of large relative particle motion, with essentially rigid adjacent regions. Because shear bands mark areas of flow, material failure and energy dissipation, they are important in many industrial, civil engineering and geophysical processes. They are also relevant to lubricating fluids confined to ultrathin molecular layers. However, detailed three-dimensional information on motion within a shear band, including the degree of particle rotation and interparticle slip, is lacking. Similarly, very little is known about how the microstructure of individual grains affects movement in densely packed material. Here we combine magnetic resonance imaging, X-ray tomography and high-speed-video particle tracking to obtain the local steady-state particle velocity, rotation and packing density for shear flow in a three-dimensional Couette geometry. We find that key characteristics of the granular microstructure determine the shape of the velocity profile.


IEEE Transactions on Robotics | 2012

A Positive Pressure Universal Gripper Based on the Jamming of Granular Material

John R. Amend; Eric Brown; Nicholas Rodenberg; Heinrich M. Jaeger; Hod Lipson

We describe a simple passive universal gripper, consisting of a mass of granular material encased in an elastic membrane. Using a combination of positive and negative pressure, the gripper can rapidly grip and release a wide range of objects that are typically challenging for universal grippers, such as flat objects, soft objects, or objects with complex geometries. The gripper passively conforms to the shape of a target object, then vacuum-hardens to grip it rigidly, later utilizing positive pressure to reverse this transition-releasing the object and returning to a deformable state. We describe the mechanical design and implementation of this gripper and quantify its performance in real-world testing situations. By using both positive and negative pressure, we demonstrate performance increases of up to 85% in reliability, 25% in error tolerance, and the added capability to shoot objects by fast ejection. In addition, multiple objects are gripped and placed at once while maintaining their relative distance and orientation. We conclude by comparing the performance of the proposed gripper with others in the field.


Physical Review Letters | 2001

Electronic Transport in Metal Nanocrystal Arrays: The Effect of Structural Disorder on Scaling Behavior

Raghuveer Parthasarathy; Xiao-Min Lin; Heinrich M. Jaeger

We investigate the impact of structural disorder on electronic transport in gold nanocrystal monolayers. Arrays ranging from void-filled networks to well-ordered superlattices show clear voltage thresholds VT due to Coulomb blockade, and temperature-independent conduction indicative of quantum tunneling. Current-voltage characteristics of arrays with and without long-range structural order were found to collapse onto distinct scaling curves. The former follow a single power law: I V 2 VT z , z 2.25 6 0.1. The latter show additional structure, reflecting the underlying disordered topology.

Collaboration


Dive into the Heinrich M. Jaeger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiao-Min Lin

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge