Heinz H. Gonska
University of Duisburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Heinz H. Gonska.
Analysis | 1991
George A. Anastassiou; Claudia Cottin; Heinz H. Gonska
AMS 1980 Subject Classification (1985 Revision): 41A17, 26A15, 26A16
Bulletin of The Australian Mathematical Society | 1986
C. Badea; Ion Badea; Heinz H. Gonska
We prove a Korovkin-type theorem on approximation of bivariate functions in the space of B -continuous functions (introduced by K. Bogel in 1934). As consequences, some sequences of uniformly approximating pseudopolynomials are obtained.
Journal of Computational and Applied Mathematics | 1994
Heinz H. Gonska; Xin-long Zhou
Abstract For the iterated Boolean sums of Bernstein operators we prove global direct, inverse and saturation results.
Calcolo | 1984
Heinz H. Gonska; J. Meier
AbstractIn 1972 D. D. Stancu introduced a generalization
Journal of Approximation Theory | 1991
Heinz H. Gonska
Numerical Functional Analysis and Optimization | 1989
Jia-Ding Cao; Heinz H. Gonska
L_{mp} ^{< \alpha \beta \gamma > }
Computers & Mathematics With Applications | 1995
Heinz H. Gonska; X.-l. Zhou
Bulletin of The Australian Mathematical Society | 1983
Heinz H. Gonska
of the classical Bernstein operators given by the formula
Rocky Mountain Journal of Mathematics | 1989
Heinz H. Gonska
Journal of Inequalities and Applications | 1999
Claudia Cottin; Ioan Gavrea; Heinz H. Gonska; Daniela P. Kacsó; Ding-Xuan Zhou
L_{mp}< \alpha \beta \gamma > (f,x) = \sum\limits_{k = 0}^{m + p} {\left( {\begin{array}{*{20}c} {m + p} \\ k \\ \end{array} } \right)} \frac{{x^{(k, - \alpha )} \cdot (1 - x)^{(m + p - k, - \alpha )} }}{{1^{(m + p, - \alpha )} }}f\left( {\frac{{k + \beta }}{{m + \gamma }}} \right)