Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heinz Miller is active.

Publication


Featured researches published by Heinz Miller.


Nature | 2004

Eight glacial cycles from an Antarctic ice core

Laurent Augustin; Carlo Barbante; Piers R F Barnes; Jean Marc Barnola; Matthias Bigler; E. Castellano; Olivier Cattani; J. Chappellaz; Dorthe Dahl-Jensen; Barbara Delmonte; Gabrielle Dreyfus; Gaël Durand; S. Falourd; Hubertus Fischer; Jacqueline Flückiger; M. Hansson; Philippe Huybrechts; Gérard Jugie; Sigfus J Johnsen; Jean Jouzel; Patrik R Kaufmann; Josef Kipfstuhl; Fabrice Lambert; Vladimir Ya. Lipenkov; Geneviève C Littot; Antonio Longinelli; Reginald Lorrain; Valter Maggi; Valérie Masson-Delmotte; Heinz Miller

The Antarctic Vostok ice core provided compelling evidence of the nature of climate, and of climate feedbacks, over the past 420,000 years. Marine records suggest that the amplitude of climate variability was smaller before that time, but such records are often poorly resolved. Moreover, it is not possible to infer the abundance of greenhouse gases in the atmosphere from marine records. Here we report the recovery of a deep ice core from Dome C, Antarctica, that provides a climate record for the past 740,000 years. For the four most recent glacial cycles, the data agree well with the record from Vostok. The earlier period, between 740,000 and 430,000 years ago, was characterized by less pronounced warmth in interglacial periods in Antarctica, but a higher proportion of each cycle was spent in the warm mode. The transition from glacial to interglacial conditions about 430,000 years ago (Termination V) resembles the transition into the present interglacial period in terms of the magnitude of change in temperatures and greenhouse gases, but there are significant differences in the patterns of change. The interglacial stage following Termination V was exceptionally long—28,000 years compared to, for example, the 12,000 years recorded so far in the present interglacial period. Given the similarities between this earlier warm period and today, our results may imply that without human intervention, a climate similar to the present one would extend well into the future.The Antarctic Vostok ice core provided compelling evidence of the nature of climate, and of climate feedbacks, over the past 420,000 years. Marine records suggest that the amplitude of climate variability was smaller before that time, but such records are often poorly resolved. Moreover, it is not possible to infer the abundance of greenhouse gases in the atmosphere from marine records. Here we report the recovery of a deep ice core from Dome C, Antarctica, that provides a climate record for the past 740,000 years. For the four most recent glacial cycles, the data agree well with the record from Vostok. The earlier period, between 740,000 and 430,000 years ago, was characterized by less pronounced warmth in interglacial periods in Antarctica, but a higher proportion of each cycle was spent in the warm mode. The transition from glacial to interglacial conditions about 430,000 years ago (Termination V) resembles the transition into the present interglacial period in terms of the magnitude of change in temperatures and greenhouse gases, but there are significant differences in the patterns of change. The interglacial stage following Termination V was exceptionally long—28,000 years compared to, for example, the 12,000 years recorded so far in the present interglacial period. Given the similarities between this earlier warm period and today, our results may imply that without human intervention, a climate similar to the present one would extend well into the future.


Nature | 2006

One-to-one coupling of glacial climate variability in Greenland and Antarctica.

Carlo Barbante; Jean-Marc Barnola; Silvia Becagli; J. Beer; Matthias Bigler; Claude F. Boutron; Thomas Blunier; E. Castellano; Olivier Cattani; J. Chappellaz; Dorthe Dahl-Jensen; Maxime Debret; Barbara Delmonte; Dorothee Dick; S. Falourd; S. H. Faria; Urs Federer; Hubertus Fischer; Johannes Freitag; Andreas Frenzel; Diedrich Fritzsche; Felix Fundel; Paolo Gabrielli; Vania Gaspari; Rainer Gersonde; Wolfgang Graf; D. Grigoriev; Ilka Hamann; M. Hansson; George R. Hoffmann

Precise knowledge of the phase relationship between climate changes in the two hemispheres is a key for understanding the Earth’s climate dynamics. For the last glacial period, ice core studies have revealed strong coupling of the largest millennial-scale warm events in Antarctica with the longest Dansgaard–Oeschger events in Greenland through the Atlantic meridional overturning circulation. It has been unclear, however, whether the shorter Dansgaard–Oeschger events have counterparts in the shorter and less prominent Antarctic temperature variations, and whether these events are linked by the same mechanism. Here we present a glacial climate record derived from an ice core from Dronning Maud Land, Antarctica, which represents South Atlantic climate at a resolution comparable with the Greenland ice core records. After methane synchronization with an ice core from North Greenland, the oxygen isotope record from the Dronning Maud Land ice core shows a one-to-one coupling between all Antarctic warm events and Greenland Dansgaard–Oeschger events by the bipolar seesaw6. The amplitude of the Antarctic warm events is found to be linearly dependent on the duration of the concurrent stadial in the North, suggesting that they all result from a similar reduction in the meridional overturning circulation.


Journal of Geophysical Research | 1997

Textures and fabrics in the GRIP ice core

Thorsteinn Thorsteinsson; Josef Kipfstuhl; Heinz Miller

A comprehensive study of textures and fabrics has been carried out on the Greenland Ice Core Project (GRIP) ice core. Crystal sizes and c axis orientations have been measured on thin sections with conventional techniques, yielding new information on the growth, rotation and recrystallization of ice crystals in the Greenland Ice Sheet. Normal grain growth is found to persist to a depth of 700 m in the core, where the onset of polygonization due to increasing strain prevents a further increase in grain size in the Holocene ice. Smaller crystals are observed in the Wisconsin ice, larger crystals are found in the Eemian ice, and the crystal size is found to vary with climatic parameters in these periods. This dependence, which probably results from variable impurity content in the ice, persists to a depth of 2930 m. Coarse-grained ice, probably resulting from rapid growth of crystals at comparatively high temperatures, is found in the lowest 100 m of the core. The data on c axis orientations reveal a steady evolution of the fabric from random near the surface to a strong single maximum in the lower part of the ice sheet. A significant strengthening is not observed at the Holocene-Wisconsin transition. The fabric development indicates that vertical compression at the ice divide is the main mode of deformation down to a depth of 2850 m. The evolution toward a single maximum fabric hardens the ice against vertical compression but softens it against simple shear. Evidence of simple shear deformation is clearly observed between 2850 m and 2950 m depth. Stretched fabrics in coarse-grained ice in the lowest 100 m could be due to tensional stresses; this ice is unlikely to be undergoing any significant horizontal deformation at the present time.


Geophysical Research Letters | 1999

Present and past climate control on fjord glaciations in Greenland: Implications for IRD‐deposition in the sea

Niels Reeh; Christoph Mayer; Heinz Miller; Henrik Højmark Thomsen; Anker Weidick

Calving of icebergs is the dominant ablation mechanism for large outlet glaciers from the Greenland ice sheet except in northernmost Greenland where bottom melting from floating glaciers dominates. This difference is controlled by present climate conditions. Glacial geological evidence indicates that the transition between the associated types of fjord-glaciations moved north-south in response to past climate change. In cold periods, local melt-out of debris from the bottom of an increasing number of floating glaciers reduces the potential for iceberg transport of IRD. Thus, the marine IRD signal of Greenland origin is not a simple cold climate signal. Our findings are discussed in the context of the ongoing debate about the kind of ice transporting IRD - icebergs or sea ice.


Geophysics | 1997

Comparison of sea-ice thickness measurements under summer and winter conditions in the Arctic using a small electromagnetic induction device

Christian Haas; Sebastian Gerland; Hajo Eicken; Heinz Miller

Drillhole-determined sea-ice thickness was compared with values derived remotely using a portable smalloffset loop-loop steady state electromagnetic (EM) induction device during expeditions to Fram Strait and the Siberian Arctic, under typical winter and summer conditions. Simple empirical transformation equations are derived to convert measured apparent conductivity into ice thickness. Despite the extreme seasonal differences in sea-ice properties as revealed by ice core analysis, the transformation equations vary little for winter and summer. Thus, the EM induction technique operated on the ice surface in the horizontal dipole mode yields accurate results within 5 to 10% of the drillhole determined thickness over level ice in both seasons. The robustness of the induction method with respect to seasonal extremes is attributed to the low salinity of brine or meltwater filling the extensive pore space in summer. Thus, the average bulk ice conductivity for summer multiyear sea ice derived according to Archie’s law amounts to 23 mS/m compared to 3 mS/m for winter conditions. These mean conductivities cause only minor differences in the EM response, as is shown by means of 1-D modeling. However, under summer conditions the range of ice conductivities is wider. Along with the widespread occurrence of surface melt ponds and freshwater lenses underneath the ice, this causes greater scatter in the apparent conductivity/ice thickness relation. This can result in higher deviations between EM-derived and drillhole determined thicknesses in summer than in winter.


Cold Regions Science and Technology | 2000

Magnetic resonance imaging of sea-ice pore fluids : methods and thermal evolution of pore microstructure

Hajo Eicken; Christian Bock; Rolf Wittig; Heinz Miller; H.-O Poertner

Abstract Microstructure and thermal evolution of sea-ice brine inclusions were investigated with magnetic resonance imaging (MRI) techniques. Ice samples were kept at temperatures between −2°C and −25°C during 1H imaging in a 4.7-T magnet at 200 MHz. Measurements were completed in a 20-cm diameter cylindrical probe and actively shielded gradient coils (max. 50 mT m−1, pixel dimensions >0.2 mm, slice thicknesses >1 mm), and for higher resolution in a mini-imaging unit with a 9-cm diameter probe with gradient coils of 200 mT m−1 (pixel dimensions


Journal of Glaciology | 2004

Spatio-temporal variability in volcanic sulphate deposition over the past 2 kyr in snow pits and firn cores from Amundsenisen, Antarctica

F. Traufetter; Hans Oerter; Hubertus Fischer; Rolf Weller; Heinz Miller

Abstract In the framework of the European Project for Ice Coring in Antarctica (EPICA), a comprehensive glaciological pre-site survey has been carried out on Amundsenisen, Dronning Maud Land, East Antarctica, in the past decade. Within this survey, four intermediate-depth ice cores and 13 snow pits were analyzed for their ionic composition and interpreted with respect to the spatial and temporal variability of volcanic sulphate deposition. The comparison of the non-sea-salt (nss)-sulphate peaks that are related to the well-known eruptions of Pinatubo and Cerro Hudson in AD 1991 revealed sulphate depositions of comparable size (15.8±3.4 kg km–2) in 11 snow pits. There is a tendency to higher annual concentrations for smaller snow-accumulation rates. The combination of seasonal sodium and annually resolved nss-sulphate records allowed the establishment of a time-scale derived by annual-layer counting over the last 2000 years and thus a detailed chronology of annual volcanic sulphate deposition. Using a robust outlier detection algorithm, 49 volcanic eruptions were identified between AD 165 and 1997. The dating uncertainty is ±3 years between AD 1997 and 1601, around ±5 years between AD 1601 and 1257, and increasing to ±24 years at AD 165, improving the accuracy of the volcanic chronology during the penultimate millennium considerably.


Annals of Glaciology | 2003

Basal melt at NorthGRIP modeled from borehole, ice-core and radio-echo sounder observations

Dorthe Dahl-Jensen; Niels S. Gundestrup; S. Prasad Gogineni; Heinz Miller

Abstract From temperature measurements down through the 3001 m deep borehole at the North Greenland Icecore Project (NorthGRIP) drill site, it is now clear that the ice at the base, 3080 m below the surface, is at the pressure-melting point. This is supported by the measurements on the ice core where the annual-layer thicknesses show there is bottom melting at the site and upstream from the borehole. Surface velocity measurements, internal radio-echo layers, borehole and ice-core data are used to constrain a time-dependent flow model simulating flow along the north-northwest-trending ice-ridge flow-line, leading to the NorthGRIP site. Also time-dependent melt rates along the flowline are calculated with a heat-flow model. The results show the geothermal heat flow varies from 50 to 200 mW m–2 along the 100km section of the modeled flowline. The melt rate at the NorthGRIP site is 0.75 cm a–1, but the deep ice in the NorthGRIP core originated 50 km upstream and has experienced melt rates as high as 1.1 cm a–1.


Journal of Glaciology | 1997

A search in north Greenland for a new ice-core drill site

Dorthe Dahl-Jensen; Niels S. Gundestrup; Kristian Keller; Sigfus J Johnsen; Sivaprasad Gogineni; Christopher Allen; Teong Sek Chuah; Heinz Miller; Sepp Kipfstuhl; Edwin D. Waddington

A new deep ice-core drilling site has been identified in north Greenland at 75.12°N, 42.30°W, 316 km north-northwest (NNW) of the GRIP drill site on the summit of the ice sheet. The ice thickness here is 3085 m; the surface elevation is 2919 m. The North GRIP (NGRIP) site is identified so that ice of Eemian age (115-130 ka BP, calendar years before present) is located as far above bedrock as possible and so the thickness of the Eemian layer is as great as possible. An ice-flow model, similar to the one used to date the GRIP ice core, is used to simulate the flow along the NNW-trending ice ridge. Surface and bedrock elevations, surface accumulation-rate distribution and ratio-echo sounding along the ridge have been used as model input. The surface accumulation rate drops from 0.23 m ice equivalent year -1 at GRIP to 0.19 m ice equivalent year -1 50 km from GRIP. Over the following 300 km the accumulation is relatively constant, before is starts decreasing again further north. Ice thickness up to 3250 m bring the temperature of the basal ice up to the pressure-melting point 100-250 km from GRIP. The NGRIP site is located 316 km from GRIP in a region where the bedrock is smooth and the accumulation rate is 0.19 m ice equivalent year -1 . The modeled basal ice here has always been a few degrees below the pressure-melting point. Internal radio-echo sounding horizons can be traced between the GRIP and NGRIP sites, allowing us to date the ice down to 2300 m depth (52 ka BP). An ice-flow model predicts that the Eemian-age ice will be located in the depth range 2710-2800 m, which is 285 m above the bedrock. This is 120 m further above the bedrock, and the thickness of the Eemian layer of ice is 20 m thicker, than at the GRIP ice-core site.


Journal of Glaciology | 2000

A comparison of radio-echo sounding data and electrical conductivity of the GRIP ice core

Ludwig Hempel; Franz Thyssen; Niels S. Gundestrup; Henrik Clausen; Heinz Miller

The depth of reflecting layers in Arctic ice sheets has been determined by electromagnetic echo sounding, using a varying distance between transmitter and receiver to determine the radar wave velocity. The depth of the radar reflecting layers is compared with a profile of electrical conductivity measurements (ECMs) from the Greenland Ice Core Project (GRIP) ice core, in order to determine the velocity of the radar waves in the ice cap. By using several reflecting layers, it is possible to isolate the firn correction of the wave velocity and to estimate the accuracy of the calculated electromagnetic wave velocity. The measured firn correction is compared with the correction calculated from the density profile, and a comparison between the depth profiles of ECM and radar based on the corrected electromagnetic wave velocity is presented. This profile shows that acid layers, which originate from major volcanic eruptions, show up as reflecting radar horizons.

Collaboration


Dive into the Heinz Miller's collaboration.

Top Co-Authors

Avatar

Hajo Eicken

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hans Oerter

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

Frank Wilhelms

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Chappellaz

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Valérie Masson-Delmotte

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge