Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heinz-Peter Schiffer is active.

Publication


Featured researches published by Heinz-Peter Schiffer.


Journal of Turbomachinery-transactions of The Asme | 2002

Boundary Layer Development in the BR710 and BR715 LP Turbines—The Implementation of High-Lift and Ultra-High-Lift Concepts

Robert Howell; H. P. Hodson; V. Schulte; R. D. Stieger; Heinz-Peter Schiffer; Frank Haselbach; N. W. Harvey

This paper describes a detailed study into the unsteady boundary layer behaviour in two high lift and one ultra high lift Rolls-Royce Deutschland LP turbines. The objectives of the paper are to show that high lift and ultra high-lift concepts have been successfully incorporated into the design of these new LP turbine profiles. Measurements from surface mounted hot film sensors were made in full size, cold flow test rigs at the altitude test facility at Stuttgart University. The LP turbine blade profiles are thought to be state of the art in terms of their lift and design philosophy. The two high lift profiles represent slightly different styles of velocity distribution. The first high-lift profile comes from a two stage LP turbine (the BR710 cold-flow, high-lift demonstrator rig). The second high-lift profile tested is from a three-stage machine (the BR715 LPT rig). The ultra-high lift profile measurements come from a redesign of the BR715 LP turbine: this is designated the BR715UHL LP turbine. This ultra high-lift profile represents a 12% reduction in blade numbers compared to the original BR715 turbine. The results from NGV2 on all of the turbines show “classical” unsteady boundary layer behaviour. The measurements from NGV3 (of both the BR715 and BR715UHL turbines) are more complicated, but can still be broken down into classical regions of wake-induced transition, natural transition and calming. The wakes from both upstream rotors and NGVs interact in a complicated manner, affecting the suction surface boundary layer of NGV3. This has important implications for the prediction of the flows on blade rows in multistage environments. NOMENCLATURE w τ Quasi wall shear stress w τ ′ RMS of signal w τ ~ Non-dimensional ensemble mean quasi wall shear stress


ASME Turbo Expo 2006: Power for Land, Sea, and Air | 2006

SHORT LENGTH-SCALE ROTATING STALL INCEPTION IN A TRANSONIC AXIAL COMPRESSOR - CRITERIA AND MECHANISMS

Chunill Hah; Jörg Bergner; Heinz-Peter Schiffer

The current paper reports on investigations aimed at advancing the understanding of the flow mechanism that leads to the onset of short-length scale rotating stall in a transonic axial compressor. Experimental data show large oscillation of the tip clearance vortex as the rotor operates near the stall condition. Inception of spike-type rotating stall is also measured in the current transonic compressor with high response pressure transducers. Computational studies of a single passage and the full annulus were carried out to identify flow mechanisms behind the spike-type stall inception in the current transonic compressor rotor. Steady and unsteady single passage flow simulations were performed, first to get insight into the interaction between the tip clearance vortex and the passage shock. The conventional Reynolds-averaged Navier-Stokes method with a standard turbulence closure scheme does not accurately reproduce tip clearance vortex oscillation and the measured unsteady pressure field. Consequently, a Large Eddy Simulation (LES) was carried out to capture more relevant physics in the computational simulation of the rotating stall inception. The unsteady random behavior of the tip clearance vortex and it’s interaction with the passage shock seem to be critical ingredients in the development of spike-type rotating stall in a transonic compressor. The Large Eddy Simulation was further extended to the full annulus to identify flow mechanisms behind the measured spike-type rotating stall inception. The current study shows that the spike-type rotating stall develops after the passage shock is fully detached from the blade passages. Interaction between the tip clearance vortex and the passage shock creates a low momentum area near the pressure side of the blade. As the mass flow rate decreases, this low momentum area moves further upstream and reversed tip clearance flow is initiated at the trailing edge plane. Eventually, the low momentum area near the pressure side reaches the leading edge and forward spillage of the tip clearance flow occurs. The flows in the affected blade passage or passages then stall. As the stalled blade passages are formed behind the passage shock, the stalled area rotates counter to the blade rotation just like the classical Emmon’s type rotating stall. Both the measurements and the computations show that the rotating stall cell covers one to two blade passage lengths and rotates at roughly 50% of the rotor speed.Copyright


ASME Turbo Expo 2007: Power for Land, Sea, and Air | 2007

Effect of Circumferential Grooves on the Aerodynamic Performance of an Axial Single-Stage Transonic Compressor

Martin W. Müller; Heinz-Peter Schiffer; Chunill Hah

This paper reports on experimental and numerical investigations on circumferential grooves in an axial single-stage transonic compressor. Total pressure ratio and efficiency speedlines were taken at design speed and three off-design conditions. The experiments comprise four different configurations with deep and shallow grooves and variable coverage of the projected rotor axial chord. All casing treatments proved to have a beneficial effect on stall range while maintaining high levels of efficiency, even at off-design operation. Deep grooves extending almost to the trailing edge showed the biggest potential: the mass flow at stall inception for design speed could be strongly reduced, and the operating range could be enlarged by 56.1%. When three shallow grooves were applied to the compressor, the stage efficiency at design speed was shifted to slightly higher values. A possible explanation could be a favorable change in stator aerodynamics due to the reduction of corner separation. For a closer look into the physical effects of grooves on the tip leakage flow, a rotor-only CFD analysis has been carried out using a steady state calculation. A multi-block grid with approximately 1.2 million nodes was used. The numerical simulations reveal strong effects of circumferential grooves on the rotor flow field at tip. Mach-number contours, axial velocity distributions and particle traces for the smooth casing and six deep grooves are presented at stall mass flow. Compared to the smooth wall case, the treated casing significantly reduces blockage in the tip area and weakens the roll-up of the core vortex. These mechanisms prevent an early spillage of low momentum fluid into the adjacent blade passage and delay the onset of rotating stall.Copyright


ASME Turbo Expo 2008: Power for Land, Sea, and Air | 2008

Tip Clearance Vortex Oscillation, Vortex Shedding and Rotating Instabilities in an Axial Transonic Compressor Rotor

Chunill Hah; Jörg Bergner; Heinz-Peter Schiffer

Unsteady flow characteristics in a modern transonic axial compressor operating near stall are studied in detail. Measured data from high-response pressure probes show that the tip clearance vortex oscillates substantially near stall. Instantaneous flow structure varies substantially among different blade passages even with uniform inlet flow. Fast Fourier transformation of measured wall pressure shows a dominant frequency component that is between 30% and 40% of the rotor speed. To identify and analyze this phenomenon, computational studies based on a single passage and full annulus were carried out. The flow field in a transonic compressor near stall is heavily influenced by the unsteady motion of tip clearance vortices. Therefore, a Large Eddy Simulation (LES) was carried out to capture transient characteristics of the tip clearance vortex more realistically. The wall pressure spectrum from the current full annulus analysis also shows a dominant frequency when the rotor operates near stall. The calculated peak frequency is about 30% of the rotor frequency. The dominant frequency, which is non-synchronous with the rotor blade, is due to rotating flow instabilities. Flow interactions across blade passages due to synchronized tip clearance vortex oscillation seem to be the main cause.Copyright


ASME Turbo Expo 2008: Power for Land, Sea, and Air | 2008

Unsteady Pressure Measurement in a Single Stage Axial Transonic Compressor Near the Stability Limit

Christoph Biela; Martin W. Müller; Heinz-Peter Schiffer; Carsten Zscherp

With the help of piezoelectric high frequency pressure probes measurements are undertaken to investigate the flow during stable compressor operation close to the stability limit. Fourteen static pressure probes record the static wall pressure and ten total pressure probes record the total pressure at the rotor exit, both in the absolute frame of reference. The data is then visualised as ensemble averaged contour and spectrum plots. With the help of wall and exit pressure, the tip leakage vortex is localised. Oscillations of the tip leakage vortex are seen as well in terms of high relative standard deviation as well as in an excitation of a frequency band around 1/2 BPF. Further investigation of the frequency spectrum with the help of the pseudo-unsteady wall pressure reveal the occurrence of rotating tip leakage vortex disturbances forming a two-passage periodic vortex pattern. The presented measurements were obtained using Rotor-1 from the TU Darmstadt rotor family. With a sampling rate of 125kHz the pressure field is resolved with 23 measurements per passage (at 20.000 rpm, design speed).Copyright


ASME Turbo Expo 2008: Power for Land, Sea, and Air | 2008

Interaction of Rotor and Casing Treatment Flow in an Axial Single-Stage Transonic Compressor With Circumferential Grooves

Martin W. Müller; Christoph Biela; Heinz-Peter Schiffer; Chunill Hah

The influence of circumferential grooves on the tip flow field of an axial single-stage transonic compressor rotor has been examined experimentally and numerically. The compressor stage provides a strongly increased stall margin with only small penalties in efficiency when the casing treatment is applied. Due to the complex interactions of the grooves with the rotor flow, unsteady measurement techniques have been chosen as an attempt to identify the aerodynamic effects responsible for the operating range extension. Therefore, the casing treatment has been instrumented with piezoresistive pressure sensors in the land between the grooves providing high-resolution static wall pressure measurements at different operating conditions. Data acquisition worked at a sampling rate of 125kHz, providing around 23 static pressure values per blade passage at 11 axial positions at the nominal speed of 20,000 rpm. A comparable dataset, but with 14 sensors, was obtained for the smooth casing. The results show the fluctuation of the tip leakage vortex and shock-vortex-interactions as well as the changed situation with casing treatment. Ensemble-averaged data shows tip leakage vortex trajectories. At near stall conditions with the smooth casing, the vortex hits the front part of the adjacent blade, which indicates the possibility of a spill forward of low momentum fluid into the next passage. Standard deviation values prove a high fluctuation of the pressure field over the tip gap. When the casing treatment is applied, the vortex trajectory maintains alignment along the blade’s suction side, thus preventing the onset of rotating stall. Results are presented as a back-to-back comparison of the smooth casing versus the treated casing at three operating conditions: peak efficiency at a mass flow rate of mpe = 16.2kg/s, near stall of the smooth casing at mnssc = 14.0kg/s and near stall of the treated casing at mns = 12.6kg/s. Steady and unsteady numerical simulations of the rotor-only flow field have been calculated with and without grooves. These calculations aim at a broad analysis of the occurring flow phenomena at the rotor tip. Tip leakage flow behaviour and vortex trajectories are discussed in detail by summarizing the congruent findings of both numerical and experimental investigations.© 2008 ASME


ASME Turbo Expo 2009: Power for Land, Sea, and Air | 2009

Non-Axisymmetric End Wall Profiling in Transonic Compressors—Part I: Improving the Static Pressure Recovery at Off-Design Conditions by Sequential Hub and Shroud End Wall Profiling

Steffen Reising; Heinz-Peter Schiffer

Secondary flows involving cross flow and three-dimensional separation phenomena in modern axial compressors at high stage loading contribute significantly to a reduction in overall efficiency. This two-part paper presents a numerical study on the potential aerodynamic benefits of using non-axisymmetric end walls in an axial compressor, involving both the rotor and the stator row. This first paper describes the sequential profiling of stator end walls in a transonic compressor at several operating points to suppress separation. An automated multi-objective optimizer connected to a 3-D RANS flow solver was used to find the optimal end wall geometries. As a design exercise, the stator hub end wall of Configuration I of the Darmstadt Transonic Compressor was first optimized at design conditions, keeping the shroud end wall constant. This led to an increase in efficiency of 1.8% due to the suppression of the hub-corner stall. However, this was accompanied by an increased area of reverse flow at the casing, which was even more distinct at off-design conditions near stall. The numerical surge limit of the datum axisymmetric design could no longer be reached and was then determined by the new separation close to the stator casing. A subsequent optimization of the shroud end wall was carried out using the improved profiled hub as the initial design. An operating point near stall with a strongly developed separation was chosen for this purpose. The second optimization resulted in a further improvement in the characteristic speed line over the entire off-design region. Although the shroud contour was designed at off-design conditions, the optimization gained an additional 0.03% in efficiency for the design point. The lower surge limit of the datum design could also be reached again, even at higher efficiency and pressure ratios. The investigations showed that end wall profiling in high loaded compressor stators can be considered as a good supplement to 3-D blading to control separation areas and improve the entire component’s characteristics.Copyright


ASME Turbo Expo 2006: Power for Land, Sea, and Air | 2006

Short Length-Scale Rotating Stall Inception in a Transonic Axial Compressor: Experimental Investigation

Jörg Bergner; Matthias Kinzel; Heinz-Peter Schiffer; Chunill Hah

To improve the understanding of spike-type stall inception of a transonic axial compressor, measurements of the unsteady static pressure in the rotor endwall region are analyzed. At design speed, a detailed experimental investigation of the unsteadiness of the pressure field at the rotor endwall at near stall condition shows a strong fluctuation of the tip clearance flow. Both vortex strength and -trajectory oscillate randomly. Analysis of the wall pressure time histories during stall inception suggests that spike-type disturbances of the flow field correlate with an upstream motion of one blade passages shock front. In addition, the evolution of a stall cell could be visualized by means of static wall-pressure contour plots.Copyright


ASME Turbo Expo 2009: Power for Land, Sea, and Air | 2009

Non-Axisymmetric End Wall Profiling in Transonic Compressors—Part II: Design Study of a Transonic Compressor Rotor Using Non-Axisymmetric End Walls—Optimization Strategies and Performance

Steffen Reising; Heinz-Peter Schiffer

Secondary flows involving cross flow at high stage loading in modern axial compressors contribute significantly to efficiency limits. This paper summarizes an approach to control end wall flow using non-axisymmetric end walls. The challenge is to find the optimal non-axisymmetric end wall shape that results in the largest gain in performance. An automated multi-objective optimizer connected to a 3-D RANS flow solver was used to design the end wall contour. The process chain was applied to the rotor hub end wall of Configuration I of the Darmstadt Transonic Compressor. Several optimization strategies involving different objective functions to be minimized and the corresponding performances were compared. The parameters considered within the optimization process were isentropic stage efficiency, pressure loss in the rotor, throat area and secondary kinetic energy (SKE). A parameter variation was undertaken, leading to the following observations: Strong penalties on SKE at the rotor outlet and moderate penalties on isentropic efficiency, throat area and pressure ratio led to the best design. Isentropic efficiency could be raised by 0.12%, SKE at the rotor exit was reduced while the total pressure ratio of the stage remained constant. Strong penalties on efficiency and pressure ratio, a moderate one on throat area and a small one on SKE at the rotor outlet all led to a smaller increase in efficiency: 0.06%. On the other hand, a slight raise in the total pressure ratio could be achieved. A third optimization, eliminating the restriction on the throat area, was carried out to see which benefit in performance could be achieved without this geometrical restriction. Since the throat areas of all optimized geometries differ slightly from the datum value, an estimation was derived to see the extent to which the end wall profiling and cross section enlargement contribute to the improvements. Finally, a method to display secondary flows in turbomachinery is introduced. A second CFD simulation is used to calculate the primary flow where the hub end wall is defined as an Euler wall to avoid the end wall boundary layer and so eliminate the cause for some of the secondary flow mechanisms. This method clearly shows how the characteristics of secondary flow can be positively influenced by using non-axisymmetric end walls.© 2009 ASME


ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition | 2011

Investigation of Passage Flow Features in a Transonic Compressor Rotor With Casing Treatments

Martin W. Müller; Heinz-Peter Schiffer; Melanie Voges; Chunill Hah

An experimental investigation on casing treatments in a one-stage transonic compressor is presented. The reference case consists of a radially staggered blisk and six circumferential grooves. Speedlines show that this axisymmetric treatment already provided a substantial increase in operating range with relatively small losses in efficiency. Since the onset of rotating stall in tip-critical high-speed compressors is always linked to the tip-leakage flow and the build-up of blockage within the blade passage. High-resolution measurement techniques have been employed to investigate the corresponding effects. Results with Particle Image Velocimetry show that the interaction between the tip leakage vortex and the shock front cause a blockage area. When throttled further, the blockage increases. The shock structure changes similar to the phenomena of vortex breakdown described by different researchers in the past, but a stagnation point is not present. Before reaching the stability limit, the interface line between the incoming flow and the blocked area moves towards the inlet plane of the rotor indicating spike-type stall inception. Wall pressure measurements confirmed this theory for the smooth wall, but with circumferential grooves applied, a part span stall cell develops prior to the stability limit. In order to assess the performance of circumferential grooves, two additional configurations are presented. The corresponding measurements addressed the questions whether circumferential grooves also provide an operating range extension when applied to an optimized rotor design with higher initial stall margin. Therefore, an identical casing treatment is applied to a forward swept rotor. The second question is, how circumferential grooves perform in direct comparison to a non-axisymmetric endwall structure. Axial slots have been applied to the radially staggered rotor. While the stall margin exceeds all other configurations, detrimential effects in efficiency are observed. A detailed anaylsis of probe data shows the changes of the radial profile at the rotor outlet which allows recommendations for more efficient CT designs. Parameters allowing to evaluate the CT influence are presented.Copyright

Collaboration


Dive into the Heinz-Peter Schiffer's collaboration.

Top Co-Authors

Avatar

Felix Holzinger

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar

Christoph Brandstetter

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar

Fabian Wartzek

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar

Holger Werschnik

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar

Martin Bruschewski

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar

Maximilian Jüngst

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sebastian Leichtfuss

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar

Christoph Biela

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar

Gregor Schmid

Technische Universität Darmstadt

View shared research outputs
Researchain Logo
Decentralizing Knowledge