Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heinz Stockinger is active.

Publication


Featured researches published by Heinz Stockinger.


Nucleic Acids Research | 2012

ExPASy: SIB bioinformatics resource portal

Panu Artimo; Manohar Jonnalagedda; Konstantin Arnold; Delphine Baratin; Gábor Csárdi; Edouard de Castro; Séverine Duvaud; Volker Flegel; Arnaud Fortier; Elisabeth Gasteiger; Aurélien Grosdidier; Céline Hernandez; Vassilios Ioannidis; Dmitry Kuznetsov; Robin Liechti; Sébastien Moretti; Khaled Mostaguir; Nicole Redaschi; Grégoire Rossier; Ioannis Xenarios; Heinz Stockinger

ExPASy (http://www.expasy.org) has worldwide reputation as one of the main bioinformatics resources for proteomics. It has now evolved, becoming an extensible and integrative portal accessing many scientific resources, databases and software tools in different areas of life sciences. Scientists can henceforth access seamlessly a wide range of resources in many different domains, such as proteomics, genomics, phylogeny/evolution, systems biology, population genetics, transcriptomics, etc. The individual resources (databases, web-based and downloadable software tools) are hosted in a ‘decentralized’ way by different groups of the SIB Swiss Institute of Bioinformatics and partner institutions. Specifically, a single web portal provides a common entry point to a wide range of resources developed and operated by different SIB groups and external institutions. The portal features a search function across ‘selected’ resources. Additionally, the availability and usage of resources are monitored. The portal is aimed for both expert users and people who are not familiar with a specific domain in life sciences. The new web interface provides, in particular, visual guidance for newcomers to ExPASy.


Proceedings of the National Academy of Sciences of the United States of America | 2011

The genome of the fire ant Solenopsis invicta

Yannick Wurm; John L. Wang; Miguel Corona; Sanne Nygaard; Brendan G. Hunt; Krista K. Ingram; Mingkwan Nipitwattanaphon; Dietrich Gotzek; Michiel B. Dijkstra; Jan Oettler; Fabien Comtesse; Cheng-Jen Shih; Wen-Jer Wu; Chin-Cheng Yang; Jérôme Thomas; Emmanuel Beaudoing; Sylvain Pradervand; Volker Flegel; Erin D. Cook; Roberto Fabbretti; Heinz Stockinger; Li Long; William G. Farmerie; Jane Oakey; Jacobus J. Boomsma; Pekka Pamilo; Soojin V. Yi; Jürgen Heinze; Michael A. D. Goodisman; Laurent Farinelli

Ants have evolved very complex societies and are key ecosystem members. Some ants, such as the fire ant Solenopsis invicta, are also major pests. Here, we present a draft genome of S. invicta, assembled from Roche 454 and Illumina sequencing reads obtained from a focal haploid male and his brothers. We used comparative genomic methods to obtain insight into the unique features of the S. invicta genome. For example, we found that this genome harbors four adjacent copies of vitellogenin. A phylogenetic analysis revealed that an ancestral vitellogenin gene first underwent a duplication that was followed by possibly independent duplications of each of the daughter vitellogenins. The vitellogenin genes have undergone subfunctionalization with queen- and worker-specific expression, possibly reflecting differential selection acting on the queen and worker castes. Additionally, we identified more than 400 putative olfactory receptors of which at least 297 are intact. This represents the largest repertoire reported so far in insects. S. invicta also harbors an expansion of a specific family of lipid-processing genes, two putative orthologs to the transformer/feminizer sex differentiation gene, a functional DNA methylation system, and a single putative telomerase ortholog. EST data indicate that this S. invicta telomerase ortholog has at least four spliceforms that differ in their use of two sets of mutually exclusive exons. Some of these and other unique aspects of the fire ant genome are likely linked to the complex social behavior of this species.


Journal of Applied Crystallography | 2009

PDB_REDO: automated re-refinement of X-ray structure models in the PDB.

Robbie P. Joosten; Jean Salzemann; V. Bloch; Heinz Stockinger; A.-C. Berglund; C. Blanchet; E. Bongcam-Rudloff; C. Combet; A. Da Costa; G. Deleage; M. Diarena; R. Fabbretti; G. Fettahi; V. Flegel; A. Gisel; Vinod Kasam; T. Kervinen; Eija Korpelainen; K. Mattila; Marco Pagni; M. Reichstadt; V. Breton; Ian J. Tickle; Gert Vriend

The majority of previously deposited X-ray structures can be improved by applying current refinement methods.


The Journal of Supercomputing | 2007

Defining the grid: a snapshot on the current view

Heinz Stockinger

AbstractnThe term “Grid” was introduced in early 1998 with the launch of the book “The Grid. Blueprint for a new computing infrastructure”. Since that time many technological changes have occurred in both hardware and software. One of the most important ones seems to be the wide acceptance of Web services. Although the basic Grid idea has not changed much in the last decade, many people have different ideas about what a Grid really is. In the following article we report on a survey where we invited many people in the field of Grid computing to give us their current understanding.n


Journal of Grid Computing | 2007

Data Intensive and Network Aware (DIANA) Grid Scheduling

Richard McClatchey; Ashiq Anjum; Heinz Stockinger; Arshad Ali; Ian Willers; M. Thomas

In Grids scheduling decisions are often made on the basis of jobs being either data or computation intensive: in data intensive situations jobs may be pushed to the data and in computation intensive situations data may be pulled to the jobs. This kind of scheduling, in which there is no consideration of network characteristics, can lead to performance degradation in a Grid environment and may result in large processing queues and job execution delays due to site overloads. In this paper we describe a Data Intensive and Network Aware (DIANA) meta-scheduling approach, which takes into account data, processing power and network characteristics when making scheduling decisions across multiple sites. Through a practical implementation on a Grid testbed, we demonstrate that queue and execution times of data-intensive jobs can be significantly improved when we introduce our proposed DIANA scheduler. The basic scheduling decisions are dictated by a weighting factor for each potential target location which is a calculated function of network characteristics, processing cycles and data location and size. The job scheduler provides a global ranking of the computing resources and then selects an optimal one on the basis of this overall access and execution cost. The DIANA approach considers the Grid as a combination of active network elements and takes network characteristics as a first class criterion in the scheduling decision matrix along with computations and data. The scheduler can then make informed decisions by taking into account the changing state of the network, locality and size of the data and the pool of available processing cycles.


Nucleic Acids Research | 2010

The EMBRACE web service collection

Steve Pettifer; Jon Ison; Matúš Kalaš; Dave Thorne; Philip McDermott; Inge Jonassen; Ali Liaquat; José María Fernández; Jose Manuel Rodriguez; David G. Pisano; Christophe Blanchet; Mahmut Uludag; Peter Rice; Edita Bartaseviciute; Kristoffer Rapacki; Maarten L. Hekkelman; Olivier Sand; Heinz Stockinger; Andrew B. Clegg; Erik Bongcam-Rudloff; Jean Salzemann; Vincent Breton; Teresa K. Attwood; Graham Cameron; Gert Vriend

The EMBRACE (European Model for Bioinformatics Research and Community Education) web service collection is the culmination of a 5-year project that set out to investigate issues involved in developing and deploying web services for use in the life sciences. The project concluded that in order for web services to achieve widespread adoption, standards must be defined for the choice of web service technology, for semantically annotating both service function and the data exchanged, and a mechanism for discovering services must be provided. Building on this, the project developed: EDAM, an ontology for describing life science web services; BioXSD, a schema for exchanging data between services; and a centralized registry (http://www.embraceregistry.net) that collects together around 1000 services developed by the consortium partners. This article presents the current status of the collection and its associated recommendations and standards definitions.


Nucleic Acids Research | 2016

Tools and data services registry: a community effort to document bioinformatics resources

Jon Ison; Kristoffer Rapacki; Hervé Ménager; Matúš Kalaš; Emil Rydza; Piotr Jaroslaw Chmura; Christian Anthon; Niall Beard; Karel Berka; Dan Bolser; Tim Booth; Anthony Bretaudeau; Jan Brezovsky; Rita Casadio; Gianni Cesareni; Frederik Coppens; Michael Cornell; Gianmauro Cuccuru; Kristian Davidsen; Gianluca Della Vedova; Tunca Doğan; Olivia Doppelt-Azeroual; Laura Emery; Elisabeth Gasteiger; Thomas Gatter; Tatyana Goldberg; Marie Grosjean; Björn Grüning; Manuela Helmer-Citterich; Hans Ienasescu

Life sciences are yielding huge data sets that underpin scientific discoveries fundamental to improvement in human health, agriculture and the environment. In support of these discoveries, a plethora of databases and tools are deployed, in technically complex and diverse implementations, across a spectrum of scientific disciplines. The corpus of documentation of these resources is fragmented across the Web, with much redundancy, and has lacked a common standard of information. The outcome is that scientists must often struggle to find, understand, compare and use the best resources for the task at hand. Here we present a community-driven curation effort, supported by ELIXIR—the European infrastructure for biological information—that aspires to a comprehensive and consistent registry of information about bioinformatics resources. The sustainable upkeep of this Tools and Data Services Registry is assured by a curation effort driven by and tailored to local needs, and shared amongst a network of engaged partners. As of November 2015, the registry includes 1785 resources, with depositions from 126 individual registrations including 52 institutional providers and 74 individuals. With community support, the registry can become a standard for dissemination of information about bioinformatics resources: we welcome everyone to join us in this common endeavour. The registry is freely available at https://bio.tools.


Nucleic Acids Research | 2014

Selectome update: quality control and computational improvements to a database of positive selection

Sébastien Moretti; Balazs Laurenczy; Walid H. Gharib; Briséïs Castella; Arnold Kuzniar; Hannes Schabauer; Romain A. Studer; Mario Valle; Nicolas Salamin; Heinz Stockinger; Marc Robinson-Rechavi

Selectome (http://selectome.unil.ch/) is a database of positive selection, based on a branch-site likelihood test. This model estimates the number of nonsynonymous substitutions (dN) and synonymous substitutions (dS) to evaluate the variation in selective pressure (dN/dS ratio) over branches and over sites. Since the original release of Selectome, we have benchmarked and implemented a thorough quality control procedure on multiple sequence alignments, aiming to provide minimum false-positive results. We have also improved the computational efficiency of the branch-site test implementation, allowing larger data sets and more frequent updates. Release 6 of Selectome includes all gene trees from Ensembl for Primates and Glires, as well as a large set of vertebrate gene trees. A total of 6810 gene trees have some evidence of positive selection. Finally, the web interface has been improved to be more responsive and to facilitate searches and browsing.


international conference on e science | 2006

Grid Approach to Embarrassingly Parallel CPU-Intensive Bioinformatics Problems

Heinz Stockinger; Marco Pagni; Lorenzo Cerutti

Bioinformatics algorithms such as sequence alignment methods based on profile-HMM (Hidden Markov Model) are popular but CPU-intensive. If large amounts of data are processed, a single computer often runs for many hours or even days. High performance infrastructures such as clusters or computational Grids provide the techniques to speed up the process by distributing the workload to remote nodes, running parts of the work load in parallel. Biologists often do not have access to such hardware systems. Therefore, we propose a new system using a modern Grid approach to optimise an embarrassingly parallel problem. We achieve speed ups by at least two orders of magnitude given that we can use a powerful, world-wide distributed Grid infrastructure. For large-scale problems our method can outperform algorithms designed for mid-size clusters even considering additional latencies imposed by Grid infrastructures.


Briefings in Bioinformatics | 2008

Experience using web services for biological sequence analysis

Heinz Stockinger; Teresa K. Attwood; Shahid Nadeem Chohan; Richard G. Côté; Philippe Cudré-Mauroux; Pedro L. Fernandes; Robert D. Finn; Taavi Hupponen; Eija Korpelainen; Alberto Labarga; Aurélie Laugraud; Tania Lima; Evangelos Pafilis; Marco Pagni; Steve Pettifer; Isabelle Phan; Nazim Rahman

Programmatic access to data and tools through the web using so-called web services has an important role to play in bioinformatics. In this article, we discuss the most popular approaches based on SOAP/WS-I and REST and describe our, a cross section of the community, experiences with providing and using web services in the context of biological sequence analysis. We briefly review main technological approaches as well as best practice hints that are useful for both users and developers. Finally, syntactic and semantic data integration issues with multiple web services are discussed.

Collaboration


Dive into the Heinz Stockinger's collaboration.

Top Co-Authors

Avatar

Konstantin Arnold

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Vassilios Ioannidis

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elisabeth Gasteiger

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Ioannis Xenarios

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Marco Pagni

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Panu Artimo

Swiss Institute of Bioinformatics

View shared research outputs
Researchain Logo
Decentralizing Knowledge