Heiyoung Park
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Heiyoung Park.
Nature Genetics | 2013
Ludmila Prokunina-Olsson; Brian Muchmore; Wei Tang; Ruth M. Pfeiffer; Heiyoung Park; Harold Dickensheets; Dianna Hergott; Patricia Porter-Gill; Adam Mumy; Indu Kohaar; Sabrina Chen; Nathan Brand; McAnthony Tarway; Luyang Liu; Faruk Sheikh; Jacquie Astemborski; Herbert L. Bonkovsky; Brian R. Edlin; Charles D. Howell; Timothy R. Morgan; David L. Thomas; Barbara Rehermann; Raymond P. Donnelly; Thomas R. O'Brien
Chronic infection with hepatitis C virus (HCV) is a common cause of liver cirrhosis and cancer. We performed RNA sequencing in primary human hepatocytes activated with synthetic double-stranded RNA to mimic HCV infection. Upstream of IFNL3 (IL28B) on chromosome 19q13.13, we discovered a new transiently induced region that harbors a dinucleotide variant ss469415590 (TT or ΔG), which is in high linkage disequilibrium with rs12979860, a genetic marker strongly associated with HCV clearance. ss469415590[ΔG] is a frameshift variant that creates a novel gene, designated IFNL4, encoding the interferon-λ4 protein (IFNL4), which is moderately similar to IFNL3. Compared to rs12979860, ss469415590 is more strongly associated with HCV clearance in individuals of African ancestry, although it provides comparable information in Europeans and Asians. Transient overexpression of IFNL4 in a hepatoma cell line induced STAT1 and STAT2 phosphorylation and the expression of interferon-stimulated genes. Our findings provide new insights into the genetic regulation of HCV clearance and its clinical management.
Journal of Experimental Medicine | 2011
Ariel C. Bulua; Anna Katharina Simon; Ravikanth Maddipati; Martin Pelletier; Heiyoung Park; Kye-Young Kim; Michael N. Sack; Daniel L. Kastner; Richard M. Siegel
ROS generated by mitochondrial respiration are needed for optimal proinflammatory cytokine production in healthy cells, and are elevated in cells from patients with an autoinflammatory disorder.
Nature Structural & Molecular Biology | 1999
Chieri Tomomori; Toshiyuki Tanaka; Rinku Dutta; Heiyoung Park; Soumitra K. Saha; Yan Zhu; Rieko Ishima; Dingjiang Liu; Kit I. Tong; Hirofumi Kurokawa; Hong Qian; Masayori Inouye; Mitsuhiko Ikura
Escherichia coli osmosensor EnvZ is a protein histidine kinase that plays a central role in osmoregulation, a cellular adaptation process involving the His-Asp phosphorelay signal transduction system. Dimerization of the transmembrane protein is essential for its autophosphorylation and phosphorelay signal transduction functions. Here we present the NMR-derived structure of the homodimeric core domain (residues 223–289) of EnvZ that includes His 243, the site of autophosphorylation and phosphate transfer reactions. The structure comprises a four-helix bundle formed by two identical helix-turn-helix subunits, revealing the molecular assembly of two active sites within the dimeric kinase.
Nature | 1998
Toshiyuki Tanaka; Soumitra K. Saha; Chieri Tomomori; Rieko Ishima; Dingjiang Liu; Kit I. Tong; Heiyoung Park; Rinku Dutta; Ling Qin; Mark B. Swindells; Toshimasa Yamazaki; Akira Ono; Masatsune Kainosho; Masayori Inouye; Mitsuhiko Ikura
Bacteria live in capricious environments, in which they must continuously sense external conditions in order to adjust their shape, motility and physiology. The histidine–aspartate phosphorelay signal-transduction system (also known as the two-component system) is important in cellular adaptation to environmental changes in both prokaryotes and lower eukaryotes,. In this system, protein histidine kinases function as sensors and signal transducers. The Escherichia coli osmosensor, EnvZ, is a transmembrane protein with histidine kinase activity in its cytoplasmic region. The cytoplasmic region contains two functional domains: domain A (residues 223–289) contains the conserved histidine residue (H243), a site of autophosphorylation as well as transphosphorylation to the conserved D55 residue of response regulator OmpR, whereas domain B (residues 290–450) encloses several highly conserved regions (G1, G2, F and N boxes) and is able to phosphorylate H243. Here we present the solution structure of domain B, the catalytic core of EnvZ. This core has a novel protein kinase structure, distinct from the serine/threonine/tyrosine kinase fold, with unanticipated similarities to both heat-shock protein 90 and DNA gyrase B.
Genes to Cells | 1997
Linda A. Egger; Heiyoung Park; Masayori Inouye
The histidyl‐aspartyl phosphorelay, formerly described as the two‐component system, is the predominant mode of signal transduction in bacteria. Adaptation to environmental changes occurs through a sensor histidine protein kinase and a response regulator. The histidine protein kinase is usually a transmembrane receptor and the response regulator is a cytoplasmic protein. Together the histidyl‐aspartyl phosphorelay proteins mediate reversible phosphorylation events that control downstream effectors. Following autophosphorylation at a conserved histidine residue, the histidine kinase serves as a phospho‐donor for the response regulator. Once phosphorylated, the response regulator mediates changes in gene expression or cellular locomotion. The EnvZ‐OmpR phosphorelay system in Escherichia coli, which monitors external osmolarity and responds by differentially modulating the expression of the OmpF and OmpC major outer membrane porins, will be described as a model system. While histidine kinases were thought to be present only in prokaryotes, they have recently been identified in eukaryotic systems. Here, we review the unique and conserved features of this growing family of signal transducers.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Anna Katharina Simon; Heiyoung Park; Ravikanth Maddipati; Adrian A. Lobito; Ariel C. Bulua; Adrianna J. Jackson; Jae Jin Chae; Rachel Ettinger; Heleen D. de Koning; Anthony C. Cruz; Daniel L. Kastner; Hirsh D. Komarow; Richard M. Siegel
TNF, acting through p55 tumor necrosis factor receptor 1 (TNFR1), contributes to the pathogenesis of many inflammatory diseases. TNFR-associated periodic syndrome (TRAPS, OMIM 142680) is an autosomal dominant autoinflammatory disorder characterized by prolonged attacks of fevers, peritonitis, and soft tissue inflammation. TRAPS is caused by missense mutations in the extracellular domain of TNFR1 that affect receptor folding and trafficking. These mutations lead to loss of normal function rather than gain of function, and thus the pathogenesis of TRAPS is an enigma. Here we show that mutant TNFR1 accumulates intracellularly in peripheral blood mononuclear cells of TRAPS patients and in multiple cell types from two independent lines of knockin mice harboring TRAPS-associated TNFR1 mutations. Mutant TNFR1 did not function as a surface receptor for TNF but rather enhanced activation of MAPKs and secretion of proinflammatory cytokines upon stimulation with LPS. Enhanced inflammation depended on autocrine TNF secretion and WT TNFR1 in mouse and human myeloid cells but not in fibroblasts. Heterozygous TNFR1-mutant mice were hypersensitive to LPS-induced septic shock, whereas homozygous TNFR1-mutant mice resembled TNFR1-deficient mice and were resistant to septic shock. Thus WT and mutant TNFR1 act in concert from distinct cellular locations to potentiate inflammation in TRAPS. These findings establish a mechanism of pathogenesis in autosomal dominant diseases where full expression of the disease phenotype depends on functional cooperation between WT and mutant proteins and also may explain partial responses of TRAPS patients to TNF blockade.
Hepatology | 2012
Heiyoung Park; Elisavet Serti; Onyinyechi Eke; Brian Muchmore; Ludmila Prokunina-Olsson; Stefania Capone; Antonella Folgori; Barbara Rehermann
Early, vigorous intrahepatic induction of interferon (IFN)‐stimulated gene (ISG) induction is a feature of hepatitis C virus (HCV) infection, even though HCV inhibits the induction of type I IFNs in vitro. To identify the cytokines and cells that drive ISG induction and mediate antiviral activity during acute HCV infection, type I and III IFN responses were studied in (1) serial liver biopsies and plasma samples obtained from 6 chimpanzees throughout acute HCV infection and (2) primary human hepatocyte (PHH) cultures upon HCV infection. Type I IFNs were minimally induced at the messenger RNA (mRNA) level in the liver and were undetectable at the protein level in plasma during acute HCV infection of chimpanzees. In contrast, type III IFNs, in particular, interleukin (IL)‐29 mRNA and protein, were strongly induced and these levels correlated with ISG expression and viremia. However, there was no association between intrahepatic or peripheral type III IFN levels and the outcome of acute HCV infection. Infection of PHH with HCV recapitulated strong type III and weak type I IFN responses. Supernatants from HCV‐infected PHH cultures mediated antiviral activity upon transfer to HCV‐replicon–containing cells. This effect was significantly reduced by neutralization of type III IFNs and less by neutralization of type I IFNs. Furthermore, IL‐29 production by HCV‐infected PHH occurred independently from type I IFN signaling and was not enhanced by the presence of plasmacytoid dendritic cells. Conclusion: Hepatocyte‐derived type III IFNs contribute to ISG induction and antiviral activity, but are not the principal determinant of the outcome of HCV infection. (HEPATOLOGY 2012;56:2060–2070)
Nature Reviews Immunology | 2012
Heiyoung Park; Ariel Bulua Bourla; Daniel L. Kastner; Robert A. Colbert; Richard M. Siegel
Autoinflammatory diseases are characterized by seemingly unprovoked pathological activation of the innate immune system in the absence of autoantibodies or autoreactive T cells. Discovery of the causative mutations underlying several monogenic autoinflammatory diseases has identified key regulators of innate immune responses. Recent studies have highlighted the role of misfolding, oligomerization and abnormal trafficking of pathogenic mutant proteins in triggering autoinflammation, and suggest that more common rheumatic diseases may have an autoinflammatory component. This coincides with recent discoveries of new links between endoplasmic reticulum stress and inflammatory signalling pathways, which support the emerging view that autoinflammatory diseases may be due to pathological dysregulation of stress-sensing pathways that normally function in host defence.
The Journal of Infectious Diseases | 2012
Sukanya Raghuraman; Heiyoung Park; William O. Osburn; Emily Winkelstein; Brian R. Edlin; Barbara Rehermann
BACKGROUND Hepatitis C virus (HCV) readily establishes chronic infection with exhaustion of HCV-specific T cells and escape from neutralizing antibodies. Spontaneous recovery from chronic infection is rare and has never to our knowledge been studied immunologically. METHODS We prospectively studied, from prior to infection through >2 years of follow-up, cytokines, HCV-specific T cells, and antibodies, as well as viral sequence evolution in a white male who spontaneously cleared HCV genotype 1a after 65 weeks. RESULTS Significant alanine aminotransferase and plasma cytokine elevation and broad HCV-specific T-cell responses did not result in HCV clearance in the acute phase. Frequency and effector function of HCV-specific T cells decreased thereafter, and HCV titers stabilized as is typical for the chronic phase. HCV clearance after 65 weeks followed the appearance of neutralizing antibodies at week 48 and was associated with reversal of HCV-specific T-cell exhaustion, as evidenced by reduced programmed death-1 (PD-1) expression and improved T-cell function. Clearance occurred without inflammation or superinfection with hepatitis B virus, human cytomegalovirus virus, influenza, and Epstein-Barr virus. CONCLUSIONS T-cell exhaustion is reversible at least in the first 2 years of chronic HCV infection, and this reversion in conjunction with neutralizing antibodies may clear HCV. These findings are relevant for immunotherapy of chronic infections.
Journal of Biological Chemistry | 1996
Qing Lu; Heiyoung Park; Linda A. Egger; Masayori Inouye
Nucleoside-diphosphate kinase (NDP kinase), a key enzyme in nucleotide metabolism, is also known to be involved in growth and developmental control and tumor metastasis suppression. Interestingly, we find that coexpression of NDP kinase with Taz1, a Tar/EnvZ chimera, in the absence of its native signal, can activate a porin gene ompC-lacZ expression in Escherichia coli. Further studies show that NDP kinase can act as a protein kinase to phosphorylate histidine protein kinases such as EnvZ and CheA which are members of the His-Asp phosphorelay signal transduction systems in E. coli. Instead of ATP, the exclusive phosphodonor for histidine kinases, GTP can be utilized in vitro in the presence of NDP kinase to phosphorylate EnvZ and CheA, which then transfer the phosphoryl group to OmpR and CheY, the respective response regulators. The direct involvement of GTP for the phosphorylation of EnvZ through NDP kinase was further demonstrated by the use of a mutant EnvZ, which lost ability to be autophosphorylated with ATP. Phospho-OmpR thus formed can bind specifically to an ompF promoter sequence. These results suggest that NDP kinase may play a physiological role in signal transduction.