Héla Kallel
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Héla Kallel.
Applied Microbiology and Biotechnology | 2011
Najla Gasmi; Franck Fudalej; Héla Kallel; Jean-Marc Nicaud
In this work, we investigated the effect of codon bias and consensus sequence (CACA) at the translation initiation site on the expression level of heterologous proteins in Yarrowia lipolytica; human interferon alpha 2b (hIFN-α2b) was studied as an example. A codon optimized hIFN-α2b gene was synthesized according to the frequency of codon usage in Y. lipolytica. Both wild-type (IFN-wt) and optimized hIFN-α2b (IFN-op) genes were expressed under the control of a strong inducible promoter acyl-co-enzyme A oxidase (POX2). Protein secretion was directed by the targeting sequence of the extracellular lipase (LIP2): pre–proLIP2. Codon optimization increased protein production by 11-fold, whereas the insertion of CACA sequence upstream of the initiation codon of IFN-op construct resulted in 16.5-fold increase of the expression level; this indicates that translational efficiency plays an important part in the increase of hIFN-α2b production level. The replacement of the pre–proLIP2 signal secretion with the LIP2 pre-region sequence followed by the X-Ala/X-Pro stretch but without the pro-region also increased the secretion of the target protein by twofold, suggesting therefore that the LIP2 pro-region is not necessary for extracellular secretion of small heterologous proteins in Yarrowia lipolytica.
Journal of Biotechnology | 2002
Héla Kallel; Ahlem Jouini; Samy Majoul; Samia Rourou
We have carried out the adaptation of BHK-21 cells to two serum free (Ex Cell 520 and HyQ PF CHO) and three animal protein free media: Ex Cell 302, HyQ PF CHO MPS and Rencyte BHK. After a direct switch or a gradual adaptation, we have achieved BHK-21 cells growth in the following media: HyQ PF CHO, HyQ PF CHO MPS, Rencyte BHK and Ex Cell 302. The most suitable media for BHK-21 cells growth, with respect to cell density and specific growth rate, were HyQ PF CHO and HyQ PF CHO MPS. Hence we have selected these media to study cell growth and the production of rabies virus. Kinetic studies of cell growth in spinner flasks using the selected media have shown that a maximal cell density of 2x10(6) cells x ml(-1) was reached in both media. For rabies virus production, the viral titer obtained was 1.7x10(6) FFU x ml(-1) in HyQ PF CHO as well as in HyQ PF CHO MPS medium. The optimization of rabies virus production by BHK-21 cells grown in a 2 l bioreactor using the selected media, pointed to the following parameters: culture mode, perfusion rate and multiplicity of infection (MOI), as being the critical factors for achieving a good virus yield. When tested in mice, the activity of the experimental vaccines prepared on HyQ PF CHO MPS medium has shown a protective activity that meets WHO requirements.
Cytotechnology | 1999
O.-W. Merten; Héla Kallel; Jean-Claude Manuguerra; M. Tardy-Panit; Radu Crainic; Francis Delpeyroux; S. van der Werf; P. Perrin
The development of media free of serum and animal or human proteins is of utmost importance for increasing the safety of biologicals produced for therapy and vaccination. In order to reduce the risk of contamination, we have modified the serum free medium MDSS2, a very efficient serum free medium for the production of various biologicals including experimental vaccines using different cell lines (Merten et al., 1994), by replacing the animal derived products by plant extracts. The new serum and animal protein free medium (MDSS2N) can be efficiently used for biomass production of various cell lines. These cells grow equally well or better in this new serum-free medium than in the old formulation (MDSS2):• BHK-21/BRS cells, adapted to MDSS2N, showed an overall specific growth rate of 0.0197 h-1 (μ_max = 0.0510±0.0058 h-1), whereas those cultivated in MDSS2 grew with an average specific growth rate of 0.0179 h-1 (μ_max = 0.0305±0.0177 h-1).• Vero cells grew with an average specific growth rate of 0.0159 h-1 and 0.0153 h-1 in MDSS2 and MDSS2N, respectively. Very similar growth rates were obtained in microcarrier cultures in stirred tank reactors: the specific growth rates were 0.0161 h-1 and 0.0166 h-1 for MDSS2 and MDSS2N cultures, respectively.• For MDCK cells, when cultured on microcarriers in bioreactors, a higher average specific growth rate was observed in MDSS2N than in MDSS2; values of 0.0248 h-1 and 0.0168 h-1, respectively, were obtained.The capacity of MDSS2N to support the production of different viruses was equally evaluated and it could be established that for certain viruses there are no or insignificant differences between MDSS2N and MDSS2 (influenza and polio virus), whereas, the production of rabies virus is somewhat reduced in MDSS2N when compared to MDSS2. The use of MDSS2N for cell culture and the production of various viruses is discussed.
Bioresource Technology | 2009
Saoussen Turki; Ines Ben Kraeim; Frederic Weeckers; Philippe Thonart; Héla Kallel
In this work the effect of several organic nitrogen sources on lipase production in Yarrowia lipolytica LgX64.81 overproducing mutant was studied. Among them, tryptone and peptone showed the most prominent stimulatory effect. Interestingly, only tryptic and peptic casein digest were found to highly induce lipase biosynthesis while lipase production was very limited in the presence of casein digest from papain and pronase-catalysed hydrolysis and absent in case of chymotryptic digest. It was also demonstrated that the stimulatory peptides should be present in the culture medium at specific proportions and molecular size to match the physiological requirement of Yarrowia lipolytica strain for lipase biosynthesis. Herein, the lipase-production stimulatory peptides were isolated by ion exchange chromatography for the first time. These results had contributed to gain an insight on tryptone role in lipase production by Yarrowia lipolytica. Moreover the use of a chemically defined medium supplemented with the isolated peptides, will improve the efficiency of the process for lipase production in this yeast.
Biotechnology Progress | 2009
Samia Rourou; Arno van der Ark; Tiny van der Velden; Héla Kallel
This work describes the development of an animal‐component free medium (IPT‐AFM) that allows an optimal growth of Vero cells, an adherent cell line used for the production of viral vaccines. Statistical experimental design was applied to identify crucial nutrients that affect cell growth. Using Medium 199 or MEM as a basal medium, a serum‐free medium (SFM) referred as IPT‐SFM that only enclosed transferrin as a component of animal origin was developed at first. Then, the composition of IPT‐SFM was further improved to obtain an animal‐component free medium named IPT‐AFM. IPT‐AFM contains M199 as a basal medium, plant hydrolysates, epidermal growth factor, ethanolamine, ferric citrate, and vitamin C. Among various plant hydrolysates, specific combinations of soy (Hypep 1510) and wheat gluten (Hypeps 4601 and 4605) hydrolysates, were identified to promote cell growth; whereas individual Hypeps had a minor positive effect on cell growth. Nevertheless, the removal of serum did influence cell attachment. Coating tissue‐culture flasks with teleostean, a product extracted from cold water fish skin, had not only enhanced cell attachment but also improved cell growth performance in static cultures. Different non‐animal proteases were also assessed as an alternative to trypsin. TrypLE Select, a recombinant trypsin, gave the best cell growth performances. Kinetics of cell growth in IPT‐AFM were investigated in T‐flasks, cell growth was comparable with that obtained in MEM+10% fetal calf serum (FCS). A mean cell division number equal to 2.26 ± 0.18 and a specific growth rate μ 0.019 ± 0.003 h−1 were achieved in IPT‐AFM.
Enzyme and Microbial Technology | 2008
Atef Ayed; Imen Rabhi; Koussay Dellagi; Héla Kallel
Human interferon α2b gene was cloned in the methylotrophic yeast Pichia pastoris under the control of the AOX1 methanol inducible promoter. To optimise the volumetric productivity, we performed different fed-batch studies in a 5-L bioreactor. We demonstrated that hIFNα2b was highly sensitive to proteases activity during high cell density culture. The target protein was totally degraded 20h after the start of methanol feeding. Replacement of culture medium with fresh medium after glycerol fed-batch culture mode as well as medium enrichment with casamino acids at 0.1% and EDTA at 10mM, had significantly improved hIFNα2b expression and prevented its proteolysis. Moreover, to further improve hIFNα2b production, three different methanol fed-batch strategies had been assayed in high cell density culture. The optimal strategy resulted in a production level of 600mg/l while residual methanol level was maintained below 2g/l. Clarification of culture supernatant through a 0.1μm hollow fiber cartridge showed that almost 95% of the target protein was retained within the retentate. Triton X-100 or NaCl addition to the culture harvest before microfiltration had improved the recovery yield of this step. rhIFNα2b was further purified by cation exchange on Sepharose SP resin followed by gel permeation on Sephacryl S-100. The overall yield of the process was equal to 30% (180mg/l). The biological activity of the purified protein based on the antiviral activity test was 1.5×10(8)IU/mg. The optimised process has a great potential for large scale production of fully functional hIFNα2b.
Microbial Cell Factories | 2011
Najla Gasmi; Atef Ayed; Jean-Marc Nicaud; Héla Kallel
BackgroundThe non conventional yeast Yarrowia lipolytica has aroused a strong industrial interest for heterologous protein production. However most of the studies describing recombinant protein production by this yeast rely on the use of complex media, such media are not convenient for large scale production particularly for products intended for pharmaceutical applications. In addition medium composition can also affect the production yield. Hence it is necessary to design an efficient medium for therapeutic protein expression by this host.ResultsFive different media, including four minimal media and a complex medium, were assessed in shake flasks for the production of human interferon alpha 2b (hIFN α2b) by Y. lipolytica under the control of POX2 promoter inducible with oleic acid. The chemically defined medium SM4 formulated by Invitrogen for Pichia pastoris growth was the most suitable. Using statistical experimental design this medium was further optimized. The selected minimal medium consisting in SM4 supplemented with 10 mg/l FeCl3, 1 g/l glutamate, 5 ml/l PTM1 (Pichia Trace Metals) solution and a vitamin solution composed of myo-inositol, thiamin and biotin was called GNY medium. Compared to shake flask, bioreactor culture in GNY medium resulted in 416-fold increase of hIFN α2b production and 2-fold increase of the biological activity.Furthermore, SM4 enrichment with 5 ml/l PTM1 solution contributed to protect hIFN α2b against the degradation by the 28 kDa protease identified by zymography gel in culture supernatant. The screening of the inhibitory effect of the trace elements present in PTM1 solution on the activity of this protease was achieved using a Box-Behnken design. Statistical data analysis showed that FeCl3 and MnSO4 had the most inhibitory effect.ConclusionWe have designed an efficient medium for large scale production of heterologous proteins by Y. lipolytica. The optimized medium GNY is suitable for the production of hIFN α2b with the advantage that no complex nitrogen sources with non-defined composition were required.
Microbial Cell Factories | 2011
Najla Gasmi; Atef Ayed; Billel Bel Hadj Ammar; Rim Zrigui; Jean-Marc Nicaud; Héla Kallel
BackgroundAs an oleaginous yeast, Yarrowia lipolytica is able to assimilate hydrophobic substrates. This led to the isolation of several promoters of key enzymes of this catabolic pathway. Less is known about the behavior of Y. lipolytica in large bioreactors using these substrates. There is therefore a lack of established know-how concerning high cell density culture protocols of this yeast. Consequently, the establishment of suitable induction conditions is required, to maximize recombinant protein production under the control of these promoters.ResultsHuman interferon α2b (huIFN α2b) production in Yarrowia lipolytica was used as a model for the enhancement of recombinant protein production under the control of the oleic acid (OA)-inducible promoter POX2. Cell viability and heterologous protein production were enhanced by exponential glucose feeding, to generate biomass before OA induction. The optimal biomass level before induction was determined (73 g L-1), and glucose was added with oleic acid during the induction phase. Several oleic acid feeding strategies were assessed. Continuous feeding with OA at a ratio of 0.02 g OA per g dry cell weight increased huIFNα2b production by a factor of 1.88 (425 mg L-1) and decreased the induction time (by a factor of 2.6, 21 h). huIFN α2b degradation by an aspartic protease secreted by Y. lipolytica was prevented by adding pepstatin (10 μM), leading to produce a 19-fold more active huIFN α2b (26.2 × 107 IU mg-1).ConclusionY. lipolytica, a generally regarded as safe (GRAS) microorganism is one of the most promising non conventional yeasts for the production of biologically active therapeutic proteins under the control of hydrophobic substrate-inducible promoter.
Food and Chemical Toxicology | 2010
Saoussen Turki; Zeineb Jabloun; Ghada Mrabet; Ammar Marouani; Philippe Thonart; Mohammed Fethi Diouani; Fethi Ben Abdallah; Abdelkader Amara; Ahmed Rejeb; Héla Kallel
Interest in extracellular lipase sourced from the non conventional yeast Yarrowia lipolytica has increased over the last decade. The enzyme was recently suggested as a good candidate for pancreatic exocrine insufficiency treatment. However, there is still a lack of oral safety evaluation data. In this work, we conducted acute and 28-day repeated dose toxicity studies in rats. Both male and female rats were first orally treated with fungal lipase at either single or repeated doses. The results demonstrated that neither single dose nor chronic administration of lipase was associated with mortality or abnormalities in general conditions, behavior and growth. Except a decrease in urine pH and a dose-unrelated increase of triglycerides observed in males, chronic administration of lipase resulted in similar hematological, blood biochemical and urine parameters to those of untreated animals. Minor histopathological changes were observed in lungs and livers of treated and untreated animals but they were considered of no toxicological significance. This study provides, for the first time, safety data on Yarrowia lipolytica extracellular lipase that support its use as a pharmaceutical.
Biotechnology Journal | 2015
Héla Kallel; Amine Kamen
Efforts to make vaccines against infectious diseases and immunotherapies for cancer have evolved to utilize a variety of heterologous expression systems such as viral vectors. These vectors are often attenuated or engineered to safely deliver genes encoding antigens of different pathogens. Adenovirus and poxvirus vectors are among the viral vectors that are most frequently used to develop prophylactic vaccines against infectious diseases as well as therapeutic cancer vaccines. This mini-review describes the trends and processes in large-scale production of adenovirus and poxvirus vectors to meet the needs of clinical applications. We briefly describe the general principles for the production and purification of adenovirus and poxvirus viral vectors. Currently, adenovirus and poxvirus vector manufacturing methods rely on well-established cell culture technologies. Several improvements have been evaluated to increase the yield and to reduce the overall manufacturing cost, such as cultivation at high cell densities and continuous downstream processing. Additionally, advancements in vector characterization will greatly facilitate the development of novel vectored vaccine candidates.