Heladia Salgado
National Autonomous University of Mexico
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Heladia Salgado.
Nucleic Acids Research | 2007
Socorro Gama-Castro; Verónica Jiménez-Jacinto; Martín Peralta-Gil; Alberto Santos-Zavaleta; Mónica I Peñaloza-Spínola; Bruno Contreras-Moreira; Juan Segura-Salazar; Luis Muñiz-Rascado; Irma Martínez-Flores; Heladia Salgado; César Bonavides-Martínez; Cei Abreu-Goodger; Carlos Rodríguez-Penagos; Juan Miranda-Ríos; Enrique Merino; Araceli M. Huerta; Luis G. Treviño-Quintanilla; Julio Collado-Vides
RegulonDB (http://regulondb.ccg.unam.mx/) is the primary reference database offering curated knowledge of the transcriptional regulatory network of Escherichia coli K12, currently the best-known electronically encoded database of the genetic regulatory network of any free-living organism. This paper summarizes the improvements, new biology and new features available in version 6.0. Curation of original literature is, from now on, up to date for every new release. All the objects are supported by their corresponding evidences, now classified as strong or weak. Transcription factors are classified by origin of their effectors and by gene ontology class. We have now computational predictions for σ54 and five different promoter types of the σ70 family, as well as their corresponding −10 and −35 boxes. In addition to those curated from the literature, we added about 300 experimentally mapped promoters coming from our own high-throughput mapping efforts. RegulonDB v.6.0 now expands beyond transcription initiation, including RNA regulatory elements, specifically riboswitches, attenuators and small RNAs, with their known associated targets. The data can be accessed through overviews of correlations about gene regulation. RegulonDB associated original literature, together with more than 4000 curation notes, can now be searched with the Textpresso text mining engine.
Nucleic Acids Research | 2013
Heladia Salgado; Martín Peralta-Gil; Socorro Gama-Castro; Alberto Santos-Zavaleta; Luis Muñiz-Rascado; Jair Santiago García-Sotelo; Verena Weiss; Hilda Solano-Lira; Irma Martínez-Flores; Alejandra Medina-Rivera; Gerardo Salgado-Osorio; Shirley Alquicira-Hernández; Kevin Alquicira-Hernández; Alejandra López-Fuentes; Liliana Porrón-Sotelo; Araceli M. Huerta; César Bonavides-Martínez; Yalbi Itzel Balderas-Martínez; Lucia Pannier; Maricela Olvera; Aurora Labastida; Verónica Jiménez-Jacinto; Leticia Vega-Alvarado; Víctor Del Moral-Chávez; Alfredo Hernández-Alvarez; Julio Collado-Vides
This article summarizes our progress with RegulonDB (http://regulondb.ccg.unam.mx/) during the past 2 years. We have kept up-to-date the knowledge from the published literature regarding transcriptional regulation in Escherichia coli K-12. We have maintained and expanded our curation efforts to improve the breadth and quality of the encoded experimental knowledge, and we have implemented criteria for the quality of our computational predictions. Regulatory phrases now provide high-level descriptions of regulatory regions. We expanded the assignment of quality to various sources of evidence, particularly for knowledge generated through high-throughput (HT) technology. Based on our analysis of most relevant methods, we defined rules for determining the quality of evidence when multiple independent sources support an entry. With this latest release of RegulonDB, we present a new highly reliable larger collection of transcription start sites, a result of our experimental HT genome-wide efforts. These improvements, together with several novel enhancements (the tracks display, uploading format and curational guidelines), address the challenges of incorporating HT-generated knowledge into RegulonDB. Information on the evolutionary conservation of regulatory elements is also available now. Altogether, RegulonDB version 8.0 is a much better home for integrating knowledge on gene regulation from the sources of information currently available.
Nucleic Acids Research | 2006
Heladia Salgado; Socorro Gama-Castro; Martín Peralta-Gil; Edgar Díaz-Peredo; Fabiola Sánchez-Solano; Alberto Santos-Zavaleta; Irma Martínez-Flores; Verónica Jiménez-Jacinto; César Bonavides-Martínez; Juan Segura-Salazar; Agustino Martínez-Antonio; Julio Collado-Vides
RegulonDB is the internationally recognized reference database of Escherichia coli K-12 offering curated knowledge of the regulatory network and operon organization. It is currently the largest electronically-encoded database of the regulatory network of any free-living organism. We present here the recently launched RegulonDB version 5.0 radically different in content, interface design and capabilities. Continuous curation of original scientific literature provides the evidence behind every single object and feature. This knowledge is complemented with comprehensive computational predictions across the complete genome. Literature-based and predicted data are clearly distinguished in the database. Starting with this version, RegulonDB public releases are synchronized with those of EcoCyc since our curation supports both databases. The complex biology of regulation is simplified in a navigation scheme based on three major streams: genes, operons and regulons. Regulatory knowledge is directly available in every navigation step. Displays combine graphic and textual information and are organized allowing different levels of detail and biological context. This knowledge is the backbone of an integrated system for the graphic display of the network, graphic and tabular microarray comparisons with curated and predicted objects, as well as predictions across bacterial genomes, and predicted networks of functionally related gene products. Access RegulonDB at .
Nucleic Acids Research | 2011
Socorro Gama-Castro; Heladia Salgado; Martín Peralta-Gil; Alberto Santos-Zavaleta; Luis Muñiz-Rascado; Hilda Solano-Lira; Verónica Jiménez-Jacinto; Verena Weiss; Jair Santiago García-Sotelo; Alejandra López-Fuentes; Liliana Porrón-Sotelo; Shirley Alquicira-Hernández; Alejandra Medina-Rivera; Irma Martínez-Flores; Kevin Alquicira-Hernández; Ruth Martínez-Adame; César Bonavides-Martínez; Juan Miranda-Ríos; Araceli M. Huerta; Alfredo Mendoza-Vargas; Leonardo Collado-Torres; Blanca Taboada; Leticia Vega-Alvarado; Maricela Olvera; Leticia Olvera; Ricardo Grande; Julio Collado-Vides
RegulonDB (http://regulondb.ccg.unam.mx/) is the primary reference database of the best-known regulatory network of any free-living organism, that of Escherichia coli K-12. The major conceptual change since 3 years ago is an expanded biological context so that transcriptional regulation is now part of a unit that initiates with the signal and continues with the signal transduction to the core of regulation, modifying expression of the affected target genes responsible for the response. We call these genetic sensory response units, or Gensor Units. We have initiated their high-level curation, with graphic maps and superreactions with links to other databases. Additional connectivity uses expandable submaps. RegulonDB has summaries for every transcription factor (TF) and TF-binding sites with internal symmetry. Several DNA-binding motifs and their sizes have been redefined and relocated. In addition to data from the literature, we have incorporated our own information on transcription start sites (TSSs) and transcriptional units (TUs), obtained by using high-throughput whole-genome sequencing technologies. A new portable drawing tool for genomic features is also now available, as well as new ways to download the data, including web services, files for several relational database manager systems and text files including BioPAX format.
Nucleic Acids Research | 2000
Heladia Salgado; Alberto Santos-Zavaleta; Socorro Gama-Castro; Dulce Millán-Zárate; Edgar Díaz-Peredo; Fabiola Sánchez-Solano; César Bonavides-Martínez; Julio Collado-Vides
RegulonDB is a database on mechanisms of transcription regulation and operon organization in Escherichia coli K-12. The current version has considerably increased numbers of regulatory elements such as promoters, binding sites and terminators. The complete repertoire of known and predicted DNA-binding transcriptional regulators can be considered to be included in this version. The database now distinguishes different allosteric conformations of regulatory proteins indicating the one active in binding and regulating the different promoters. A new set of operon predictions has been incorporated. The relational design has been modified accordingly. Furthermore, a major improvement is a graphic display enabling browsing of the database with a Java-based graphic user interface with three zoom-levels connected to properties of each chromosomal element. The purpose of these modifications is to make RegulonDB a useful tool and control set for transcriptome experiments. RegulonDB can be accessed on the web at the URL: http://www.cifn.unam.mx/Computational_Biology/++ +regulondb/
PLOS ONE | 2009
Alfredo Mendoza-Vargas; Leticia Olvera; Maricela Olvera; Ricardo Grande; Leticia Vega-Alvarado; Blanca Taboada; Verónica Jiménez-Jacinto; Heladia Salgado; Katy Juárez; Bruno Contreras-Moreira; Araceli M. Huerta; Julio Collado-Vides
Despite almost 40 years of molecular genetics research in Escherichia coli a major fraction of its Transcription Start Sites (TSSs) are still unknown, limiting therefore our understanding of the regulatory circuits that control gene expression in this model organism. RegulonDB (http://regulondb.ccg.unam.mx/) is aimed at integrating the genetic regulatory network of E. coli K12 as an entirely bioinformatic project up till now. In this work, we extended its aims by generating experimental data at a genome scale on TSSs, promoters and regulatory regions. We implemented a modified 5′ RACE protocol and an unbiased High Throughput Pyrosequencing Strategy (HTPS) that allowed us to map more than 1700 TSSs with high precision. From this collection, about 230 corresponded to previously reported TSSs, which helped us to benchmark both our methodologies and the accuracy of the previous mapping experiments. The other ca 1500 TSSs mapped belong to about 1000 different genes, many of them with no assigned function. We identified promoter sequences and type of σ factors that control the expression of about 80% of these genes. As expected, the housekeeping σ70 was the most common type of promoter, followed by σ38. The majority of the putative TSSs were located between 20 to 40 nucleotides from the translational start site. Putative regulatory binding sites for transcription factors were detected upstream of many TSSs. For a few transcripts, riboswitches and small RNAs were found. Several genes also had additional TSSs within the coding region. Unexpectedly, the HTPS experiments revealed extensive antisense transcription, probably for regulatory functions. The new information in RegulonDB, now with more than 2400 experimentally determined TSSs, strengthens the accuracy of promoter prediction, operon structure, and regulatory networks and provides valuable new information that will facilitate the understanding from a global perspective the complex and intricate regulatory network that operates in E. coli.
Nucleic Acids Research | 1998
Araceli M. Huerta; Heladia Salgado; Denis Thieffry; Julio Collado-Vides
RegulonDB is a DataBase that integrates biological knowledge of the mechanisms that regulate the transcription initiation in Escherichia coli , as well as knowledge on the organization of the genes and regulatory signals into operons in the chromosome. The operon is the basic structure used in RegulonDB to describe the elements and properties of transcriptional regulation. The current version contains information around some 500 regulation mechanisms, essentially for sigma 70 promoters.
Genome Biology | 2003
Víctor González; Patricia Bustos; Miguel A. Ramírez-Romero; Arturo Medrano-Soto; Heladia Salgado; Ismael Hernández-González; Juan Carlos Hernández-Celis; Verónica Quintero; Gabriel Moreno-Hagelsieb; Lourdes Girard; Oscar Rodríguez; Margarita Flores; Miguel A. Cevallos; Julio Collado-Vides; David Romero; Guillermo Dávila
BackgroundSymbiotic bacteria known as rhizobia interact with the roots of legumes and induce the formation of nitrogen-fixing nodules. In rhizobia, essential genes for symbiosis are compartmentalized either in symbiotic plasmids or in chromosomal symbiotic islands. To understand the structure and evolution of the symbiotic genome compartments (SGCs), it is necessary to analyze their common genetic content and organization as well as to study their differences. To date, five SGCs belonging to distinct species of rhizobia have been entirely sequenced. We report the complete sequence of the symbiotic plasmid of Rhizobium etli CFN42, a microsymbiont of beans, and a comparison with other SGC sequences available.ResultsThe symbiotic plasmid is a circular molecule of 371,255 base-pairs containing 359 coding sequences. Nodulation and nitrogen-fixation genes common to other rhizobia are clustered in a region of 125 kilobases. Numerous sequences related to mobile elements are scattered throughout. In some cases the mobile elements flank blocks of functionally related sequences, thereby suggesting a role in transposition. The plasmid contains 12 reiterated DNA families that are likely to participate in genomic rearrangements. Comparisons between this plasmid and complete rhizobial genomes and symbiotic compartments already sequenced show a general lack of synteny and colinearity, with the exception of some transcriptional units. There are only 20 symbiotic genes that are shared by all SGCs.ConclusionsOur data support the notion that the symbiotic compartments of rhizobia genomes are mosaic structures that have been frequently tailored by recombination, horizontal transfer and transposition.
Nucleic Acids Research | 2016
Socorro Gama-Castro; Heladia Salgado; Alberto Santos-Zavaleta; Daniela Ledezma-Tejeida; Luis Muñiz-Rascado; Jair Santiago García-Sotelo; Kevin Alquicira-Hernández; Irma Martínez-Flores; Lucia Pannier; Jaime A Castro-Mondragon; Alejandra Medina-Rivera; Hilda Solano-Lira; César Bonavides-Martínez; Shirley Alquicira-Hernández; Liliana Porrón-Sotelo; Alejandra López-Fuentes; Anastasia Hernández-Koutoucheva; Víctor Del Moral-Chávez; Fabio Rinaldi; Julio Collado-Vides
RegulonDB (http://regulondb.ccg.unam.mx) is one of the most useful and important resources on bacterial gene regulation,as it integrates the scattered scientific knowledge of the best-characterized organism, Escherichia coli K-12, in a database that organizes large amounts of data. Its electronic format enables researchers to compare their results with the legacy of previous knowledge and supports bioinformatics tools and model building. Here, we summarize our progress with RegulonDB since our last Nucleic Acids Research publication describing RegulonDB, in 2013. In addition to maintaining curation up-to-date, we report a collection of 232 interactions with small RNAs affecting 192 genes, and the complete repertoire of 189 Elementary Genetic Sensory-Response units (GENSOR units), integrating the signal, regulatory interactions, and metabolic pathways they govern. These additions represent major progress to a higher level of understanding of regulated processes. We have updated the computationally predicted transcription factors, which total 304 (184 with experimental evidence and 120 from computational predictions); we updated our position-weight matrices and have included tools for clustering them in evolutionary families. We describe our semiautomatic strategy to accelerate curation, including datasets from high-throughput experiments, a novel coexpression distance to search for ‘neighborhood’ genes to known operons and regulons, and computational developments.
Bioinformatics | 1998
Denis Thieffry; Heladia Salgado; Araceli M. Huerta; Julio Collado-Vides
MOTIVATION As one of the best-characterized free-living organisms, Escherichia coli and its recently completed genomic sequence offer a special opportunity to exploit systematically the variety of regulatory data available in the literature in order to make a comprehensive set of regulatory predictions in the whole genome. RESULTS The complete genome sequence of E.coli was analyzed for the binding of transcriptional regulators upstream of coding sequences. The biological information contained in RegulonDB (Huerta, A.M. et al., Nucleic Acids Res.,26,55-60, 1998) for 56 different transcriptional proteins was the support to implement a stringent strategy combining string search and weight matrices. We estimate that our search included representatives of 15-25% of the total number of regulatory binding proteins in E.coli. This search was performed on the set of 4288 putative regulatory regions, each 450 bp long. Within the regions with predicted sites, 89% are regulated by one protein and 81% involve only one site. These numbers are reasonably consistent with the distribution of experimental regulatory sites. Regulatory sites are found in 603 regions corresponding to 16% of operon regions and 10% of intra-operonic regions. Additional evidence gives stronger support to some of these predictions, including the position of the site, biological consistency with the function of the downstream gene, as well as genetic evidence for the regulatory interaction. The predictions described here were incorporated into the map presented in the paper describing the complete E.coli genome (Blattner,F.R. et al., Science, 277, 1453-1461, 1997). AVAILABILITY The complete set of predictions in GenBank format is available at the url: http://www. cifn.unam.mx/Computational_Biology/E.coli-predictions CONTACT [email protected], [email protected]