Helder Maiato
University of Porto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Helder Maiato.
Journal of Cell Science | 2004
Helder Maiato; Jennifer G. DeLuca; E. D. Salmon; William C. Earnshaw
The kinetochore is a control module that both powers and regulates chromosome segregation in mitosis and meiosis. The kinetochore-microtubule interface is remarkably fluid, with the microtubules growing and shrinking at their point of attachment to the kinetochore. Furthermore, the kinetochore itself is highly dynamic, its makeup changing as cells enter mitosis and as it encounters microtubules. Active kinetochores have yet to be isolated or reconstituted, and so the structure remains enigmatic. Nonetheless, recent advances in genetic, bioinformatic and imaging technology mean we are now beginning to understand how kinetochores assemble, bind to microtubules and release them when the connections made are inappropriate, and also how they influence microtubule behaviour. Recent work has begun to elucidate a pathway of kinetochore assembly in animal cells; the work has revealed that many kinetochore components are highly dynamic and that some cycle between kinetochores and spindle poles along microtubules. Further studies of the kinetochore-microtubule interface are illuminating: (1) the role of the Ndc80 complex and components of the Ran-GTPase system in microtubule attachment, force generation and microtubule-dependent inactivation of kinetochore spindle checkpoint activity; (2) the role of chromosomal passenger proteins in the correction of kinetochore attachment errors; and (3) the function of microtubule plus-end tracking proteins, motor depolymerases and other proteins in kinetochore movement on microtubules and movement coupled to microtubule poleward flux.
Journal of Cell Biology | 2002
Helder Maiato; Paula Sampaio; Catarina Lemos; John B. C. Findlay; Mar Carmena; William C. Earnshaw; Claudio E. Sunkel
Multiple asters (MAST)/Orbit is a member of a new family of nonmotor microtubule-associated proteins that has been previously shown to be required for the organization of the mitotic spindle. Here we provide evidence that MAST/Orbit is required for functional kinetochore attachment, chromosome congression, and the maintenance of spindle bipolarity. In vivo analysis of Drosophila mast mutant embryos undergoing early mitotic divisions revealed that chromosomes are unable to reach a stable metaphase alignment and that bipolar spindles collapse as centrosomes move progressively closer toward the cell center and eventually organize into a monopolar configuration. Similarly, soon after depletion of MAST/Orbit in Drosophila S2 cells by double-stranded RNA interference, cells are unable to form a metaphase plate and instead assemble monopolar spindles with chromosomes localized close to the center of the aster. In these cells, kinetochores either fail to achieve end-on attachment or are associated with short microtubules. Remarkably, when microtubule dynamics is suppressed in MAST-depleted cells, chromosomes localize at the periphery of the monopolar aster associated with the plus ends of well-defined microtubule bundles. Furthermore, in these cells, dynein and ZW10 accumulate at kinetochores and fail to transfer to microtubules. However, loss of MAST/Orbit does not affect the kinetochore localization of D-CLIP-190. Together, these results strongly support the conclusion that MAST/Orbit is required for microtubules to form functional attachments to kinetochores and to maintain spindle bipolarity.
The EMBO Journal | 2000
Catarina Lemos; Paula Sampaio; Helder Maiato; Madalena Costa; Leonid V. Omel'yanchuk; Vasco Liberal; Claudio E. Sunkel
Through mutational analysis in Drosophila, we have identified the gene multiple asters (mast), which encodes a new 165 kDa protein. mast mutant neuroblasts are highly polyploid and show severe mitotic abnormalities including the formation of mono‐ and multi‐polar spindles organized by an irregular number of microtubule‐organizing centres of abnormal size and shape. The mast gene product is evolutionarily conserved since homologues were identified from yeast to man, revealing a novel protein family. Antibodies against Mast and analysis of tissue culture cells expressing an enhanced green fluorescent protein–Mast fusion protein show that during mitosis, this protein localizes to centrosomes, the mitotic spindle, centromeres and spindle midzone. Microtubule‐binding assays indicate that Mast is a microtubule‐associated protein displaying strong affinity for polymerized microtubules. The defects observed in the mutant alleles and the intracellular localization of the protein suggest that Mast plays an essential role in centrosome separation and organization of the bipolar mitotic spindle.
Journal of Cell Biology | 2009
Mariana Lince-Faria; Stefano Maffini; Bernard Orr; Yun Ding; Cláudia Florindo; Claudio E. Sunkel; Álvaro Tavares; Jørgen Johansen; Kristen M. Johansen; Helder Maiato
A putative spindle matrix has been hypothesized to mediate chromosome motion, but its existence and functionality remain controversial. In this report, we show that Megator (Mtor), the Drosophila melanogaster counterpart of the human nuclear pore complex protein translocated promoter region (Tpr), and the spindle assembly checkpoint (SAC) protein Mad2 form a conserved complex that localizes to a nuclear derived spindle matrix in living cells. Fluorescence recovery after photobleaching experiments supports that Mtor is retained around spindle microtubules, where it shows distinct dynamic properties. Mtor/Tpr promotes the recruitment of Mad2 and Mps1 but not Mad1 to unattached kinetochores (KTs), mediating normal mitotic duration and SAC response. At anaphase, Mtor plays a role in spindle elongation, thereby affecting normal chromosome movement. We propose that Mtor/Tpr functions as a spatial regulator of the SAC, which ensures the efficient recruitment of Mad2 to unattached KTs at the onset of mitosis and proper spindle maturation, whereas enrichment of Mad2 in a spindle matrix helps confine the action of a diffusible “wait anaphase” signal to the vicinity of the spindle.
The EMBO Journal | 2010
Amity L. Manning; Samuel F. Bakhoum; Stefano Maffini; Clara Correia-Melo; Helder Maiato; Duane A. Compton
Accurate chromosome segregation during mitosis requires precise coordination of various processes, such as chromosome alignment, maturation of proper kinetochore–microtubule (kMT) attachments, correction of erroneous attachments, and silencing of the spindle assembly checkpoint (SAC). How these fundamental aspects of mitosis are coordinately and temporally regulated is poorly understood. In this study, we show that the temporal regulation of kMT attachments by CLASP1, astrin and Kif2b is central to mitotic progression and chromosome segregation fidelity. In early mitosis, a Kif2b–CLASP1 complex is recruited to kinetochores to promote chromosome movement, kMT turnover, correction of attachment errors, and maintenance of SAC signalling. However, during metaphase, this complex is replaced by an astrin–CLASP1 complex, which promotes kMT stability, chromosome alignment, and silencing of the SAC. We show that these two complexes are differentially recruited to kinetochores and are mutually exclusive. We also show that other kinetochore proteins, such as Kif18a, affect kMT attachments and chromosome movement through these proteins. Thus, CLASP1–astrin–Kif2b complex act as a central switch at kinetochores that defines mitotic progression and promotes fidelity by temporally regulating kMT attachments.
Nature Cell Biology | 2011
Agata M. Olszak; Dominic van Essen; António J. Pereira; Sarah Diehl; Thomas Manke; Helder Maiato; Simona Saccani; Patrick Heun
The centromere-specific histone H3 variant CENH3 (also known as CENP-A) is considered to be an epigenetic mark for establishment and propagation of centromere identity. Pulse induction of CENH3 (Drosophila CID) in Schneider S2 cells leads to its incorporation into non-centromeric regions and generates CID islands that resist clearing from chromosome arms for multiple cell generations. We demonstrate that CID islands represent functional ectopic kinetochores, which are non-randomly distributed on the chromosome and show a preferential localization near telomeres and pericentric heterochromatin in transcriptionally silent, intergenic chromatin domains. Although overexpression of heterochromatin protein 1 (HP1) or increasing histone acetylation interferes with CID island formation on a global scale, induction of a locally defined region of synthetic heterochromatin by targeting HP1–LacI fusions to stably integrated Lac operator arrays produces a proximal hotspot for CID deposition. These data indicate that the characteristics of regions bordering heterochromatin promote de novo kinetochore assembly and thereby contribute to centromere identity.
Current Biology | 2009
Stefano Maffini; Ana Maia; Amity L. Manning; Zoltan Maliga; Ana L. Pereira; Magno Junqueira; Andrej Shevchenko; Anthony A. Hyman; John R. Yates; Niels Galjart; Duane A. Compton; Helder Maiato
Efficient chromosome segregation during mitosis relies on the coordinated activity of molecular motors with proteins that regulate kinetochore attachments to dynamic spindle microtubules [1]. CLASPs are conserved kinetochore- and microtubule-associated proteins encoded by two paralog genes, clasp1 and clasp2, and have been previously implicated in the regulation of kinetochore microtubule dynamics [2-4]. However, it remains unknown how CLASPs work in concert with other proteins to form a functional kinetochore microtubule interface. Here we have identified mitotic interactors of human CLASP1 via a proteomic approach. Among these, the microtubule plus-end-directed motor CENP-E [5] was found to form a complex with CLASP1 that colocalizes to multiple structures of the mitotic apparatus in human cells. We found that CENP-E recruits both CLASP1 and CLASP2 to kinetochores independently of its motor activity or the presence of microtubules. Depletion of CLASPs or CENP-E by RNA interference in human cells causes a significant and comparable reduction of kinetochore microtubule poleward flux and turnover rates and rescues spindle bipolarity in Kif2a-depleted cells. We conclude that CENP-E integrates two critical functions that are important for accurate chromosome movement and spindle architecture: one relying directly on its motor activity, and the other involving the targeting of key microtubule regulators to kinetochores.
Science | 2015
Marin Barisic; Ricardo Silva e Sousa; Suvranta K. Tripathy; Maria M. Magiera; Anatoly V. Zaytsev; Ana L. Pereira; Carsten Janke; Ekaterina L. Grishchuk; Helder Maiato
Chromosomes: Let me be your guide The correct alignment of chromosomes at the center of the mitotic spindle—the metaphase plate—before cell division is one of the key mechanisms for the maintenance of genomic stability. But is there anything special about the microtubules of the spindle that helps this process? Barisic et al. demonstrate that chromosome alignment at the cell equator is controlled by a specific posttranslational modification of selected microtubules oriented toward the center of the mitotic spindle. Science, this issue p. 799 Microtubule detyrosination works as a navigation system for kinetochore-based chromosome motility during cell division. Before chromosomes segregate into daughter cells, they align at the mitotic spindle equator, a process known as chromosome congression. Centromere-associated protein E (CENP-E)/Kinesin-7 is a microtubule plus-end–directed kinetochore motor required for congression of pole-proximal chromosomes. Because the plus-ends of many astral microtubules in the spindle point to the cell cortex, it remains unknown how CENP-E guides pole-proximal chromosomes specifically toward the equator. We found that congression of pole-proximal chromosomes depended on specific posttranslational detyrosination of spindle microtubules that point to the equator. In vitro reconstitution experiments demonstrated that CENP-E–dependent transport was strongly enhanced on detyrosinated microtubules. Blocking tubulin tyrosination in cells caused ubiquitous detyrosination of spindle microtubules, and CENP-E transported chromosomes away from spindle poles in random directions. Thus, CENP-E–driven chromosome congression is guided by microtubule detyrosination.
Current Biology | 2006
Kristin J. VandenBeldt; Rita M. Barnard; Polla Hergert; Xing Meng; Helder Maiato; Bruce F. McEwen
Chromosome alignment during mitosis is frequently accompanied by a dynamic switching between elongation and shortening of kinetochore fibers (K-fibers) that connect kinetochores and spindle poles . In higher eukaryotes, mature K-fibers consist of 10-30 kinetochore microtubules (kMTs) whose plus ends are embedded in the kinetochore . A critical and long-standing question is how the dynamics of individual kMTs within the K-fiber are coordinated . We have addressed this question by using electron tomography to determine the polymerization/depolymerization status of individual kMTs in the K-fibers of PtK1 and Drosophila S2 cells. Surprisingly, we find that the plus ends of two-thirds of kMTs are in a depolymerizing state, even when the K-fiber exhibits net tubulin incorporation at the plus end . Furthermore, almost all individual K-fibers examined had a mixture of kMTs in the polymerizing and depolymerizing states. Therefore, although K-fibers elongate and shrink as a unit, the dynamics of individual kMTs within a K-fiber are not coordinated at any given moment. Our results suggest a novel control mechanism through which attachment to the kinetochore outer plate prevents shrinkage of kMTs. We discuss the ramifications of this new model on the regulation of chromosome movement and the stability of K-fibers.
Nature Cell Biology | 2014
Helder Maiato; Elsa Logarinho
Mitotic spindle bipolarity is essential for faithful segregation of chromosomes during cell division. Multipolar spindles are often seen in human cancers and are usually associated with supernumerary centrosomes that result from centrosome overduplication or cytokinesis failure. A less-understood path to multipolar spindle formation may arise due to loss of spindle pole integrity in response to spindle and/or chromosomal forces. Here we discuss the different routes leading to multipolar spindle formation, focusing on spindle multipolarity without centrosome amplification. We also present the distinct and common features between these pathways and discuss their therapeutic implications.