Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heleen M. van der Klift is active.

Publication


Featured researches published by Heleen M. van der Klift.


The New England Journal of Medicine | 1998

Clinical findings with implications for genetic testing in families with clustering of colorectal cancer.

Juul T. Wijnen; Hans F. A. Vasen; P. Meera Khan; Aeilko H. Zwinderman; Heleen M. van der Klift; Adri Mulder; Carli M. J. Tops; Pål Møller; Riccardo Fodde; Fred H. Menko; Babs G. Taal; Fokko M. Nagengast; Han G. Brunner; Jan H. Kleibeuker; Rolf H. Sijmons; G. Griffioen; Annette H. J. T. Bröcker-Vriends; Egbert Bakker; Inge van Leeuwen-Cornelisse; Anne Meijers-Heijboer; Dick Lindhout; Martijn H. Breuning; Jan G. Post; Cees Schaap; Jaran Apold; Ketil Heimdal; Lucio Bertario; Marie Luise Bisgaard; Petr Goetz

BACKGROUND Germ-line mutations in DNA mismatch-repair genes (MSH2, MLH1, PMS1, PMS2, and MSH6) cause susceptibility to hereditary nonpolyposis colorectal cancer. We assessed the prevalence of MSH2 and MLH1 mutations in families suspected of having hereditary nonpolyposis colorectal cancer and evaluated whether clinical findings can predict the outcome of genetic testing. METHODS We used denaturing gradient gel electrophoresis to identify MSH2 and MLH1 mutations in 184 kindreds with familial clustering of colorectal cancer or other cancers associated with hereditary nonpolyposis colorectal cancer. Information on the site of cancer, the age at diagnosis, and the number of affected family members was obtained from all families. RESULTS Mutations of MSH2 or MLH1 were found in 47 of the 184 kindreds (26 percent). Clinical factors associated with these mutations were early age at diagnosis of colorectal cancer, the occurrence in the kindred of endometrial cancer or tumors of the small intestine, a higher number of family members with colorectal or endometrial cancer, the presence of multiple colorectal cancers or both colorectal and endometrial cancers in a single family member, and fulfillment of the Amsterdam criteria for the diagnosis of hereditary nonpolyposis colorectal cancer (at least three family members in two or more successive generations must have colorectal cancer, one of whom is a first-degree relative of the other two; cancer must be diagnosed before the age of 50 in at least one family member; and familial adenomatous polyposis must be ruled out). Multivariate analysis showed that a younger age at diagnosis of colorectal cancer, fulfillment of the Amsterdam criteria, and the presence of endometrial cancer in the kindred were independent predictors of germ-line mutations of MSH2 or MLH1. These results were used to devise a logistic model for estimating the likelihood of a mutation in MSH2 and MLH1. CONCLUSIONS Assessment of clinical findings can improve the rate of detection of mutations of DNA mismatch-repair genes in families suspected of having hereditary nonpolyposis colorectal cancer.


American Journal of Human Genetics | 1997

Hereditary nonpolyposis colorectal cancer families not complying with the Amsterdam criteria show extremely low frequency of mismatch-repair-gene mutations.

Juul T. Wijnen; P. Meera Khan; Hans F. A. Vasen; Heleen M. van der Klift; Adri Mulder; Inge van Leeuwen-Cornelisse; Bert Bakker; Monique Losekoot; Pål Møller; Riccardo Fodde

Hereditary nonpolyposis colorectal cancer (HNPCC) is a common autosomal dominant cancer-susceptibility condition characterized by early onset colorectal cancer. Germ-line mutations in one of four DNA mismatch repair (MMR) genes, hMSH2, hMLH1, hPMS1, or hPMS2, are known to cause HNPCC. Although many mutations in these genes have been found in HNPCC kindreds complying with the so-called Amsterdam criteria, little is known about the involvement of these genes in families not satisfying these criteria but showing clear-cut familial clustering of colorectal cancer and other cancers. Here, we applied denaturing gradient-gel electrophoresis to screen for hMSH2 and hMLH1 mutations in two sets of HNPCC families, one set comprising families strictly complying with the Amsterdam criteria and another set in which at least one of the criteria was not satisfied. Interestingly, hMSH2 and hMLH1 mutations were found in 49% of the kindreds fully complying with the Amsterdam criteria, whereas a disease-causing mutation could be identified in only 8% of the families in which the criteria were not satisfied fully. In correspondence with these findings, 4 of 6 colorectal tumors from patients belonging to kindreds meeting the criteria showed microsatellite instability, whereas only 3 of 11 tumors from the other set of families demonstrated this instability. Although the number of tumors included in the study admittedly is small, the frequencies of mutations in the MMR genes show obvious differences between the two clinical sets of families. These results also emphasize the practical importance of the Amsterdam criteria, which provide a valid clinical subdivision between families, on the basis of their chance of carrying an hMSH2 or an hMLH1 mutation, and which bear important consequences for genetic testing and counseling and for the management of colorectal cancer families.


American Journal of Human Genetics | 2003

Molecular analysis of hereditary nonpolyposis colorectal cancer in the United States: High mutation detection rate among clinically selected families and characterization of an American founder genomic deletion of the MSH2 gene

Anja Wagner; Alicia Barrows; Juul T. Wijnen; Heleen M. van der Klift; Patrick Franken; Paul Verkuijlen; Hidewaki Nakagawa; Marjan Geugien; Shantie Jaghmohan-Changur; Cor Breukel; Hanne Meijers-Heijboer; Hans Morreau; Marjo van Puijenbroek; John Burn; Stephany Coronel; Yulia Kinarski; Ross A. Okimoto; Patrice Watson; Jane F. Lynch; Albert de la Chapelle; Henry T. Lynch; Riccardo Fodde

The identification of germline mutations in families with HNPCC is hampered by genetic heterogeneity and clinical variability. In previous studies, MSH2 and MLH1 mutations were found in approximately two-thirds of the Amsterdam-criteria-positive families and in much lower percentages of the Amsterdam-criteria-negative families. Therefore, a considerable proportion of HNPCC seems not to be accounted for by the major mismatch repair (MMR) genes. Does the latter result from a lack of sensitivity of mutation detection techniques, or do additional genes underlie the remaining cases? In this study we address these questions by thoroughly investigating a cohort of clinically selected North American families with HNPCC. We analyzed 59 clinically well-defined U.S. families with HNPCC for MSH2, MLH1, and MSH6 mutations. To maximize mutation detection, different techniques were employed, including denaturing gradient gel electrophoresis, Southern analysis, microsatellite instability, immunohistochemistry, and monoallelic expression analysis. In 45 (92%) of the 49 Amsterdam-criteria-positive families and in 7 (70%) of the 10 Amsterdam-criteria-negative families, a mutation was detected in one of the three analyzed MMR genes. Forty-nine mutations were in MSH2 or MLH1, and only three were in MSH6. A considerable proportion (27%) of the mutations were genomic rearrangements (12 in MSH2 and 2 in MLH1). Notably, a deletion encompassing exons 1-6 of MSH2 was detected in seven apparently unrelated families (12% of the total cohort) and was subsequently proven to be a founder. Screening of a second U.S. cohort with HNPCC from Ohio allowed the identification of two additional kindreds with the identical founder deletion. In the present study, we show that optimal mutation detection in HNPCC is achieved by combining accurate and expert clinical selection with an extensive mutation detection strategy. Notably, we identified a common North American deletion in MSH2, accounting for approximately 10% of our cohort. Genealogical, molecular, and haplotype studies showed that this deletion represents a North American founder mutation that could be traced back to the 19th century.


Human Mutation | 1997

Molecular analysis of the APC gene in 105 Dutch kindreds with familial adenomatous polyposis: 67 germline mutations identified by DGGE, PTT, and southern analysis.

Rob B. van der Luijt; P. Meera Khan; Hans F. A. Vasen; Carli M. J. Tops; Inge van Leeuwen-Cornelisse; Juul T. Wijnen; Heleen M. van der Klift; Rob J. Plug; G. Griffioen; Riccardo Fodde

Germline mutations of the adenomatous polyposis coli (APC) gene are responsible for familial adenomatous polyposis (FAP), an autosomal dominant predisposition to colorectal cancer. We screened the entire coding region of the APC gene for mutations in an unselected series of 105 Dutch FAP kindreds. For the analysis of exons 1–14, we employed the GC‐clamped denaturing gradient gel electrophoresis (DGGE), while the large exon 15 was examined using the protein truncation test. Using this approach, we identified 65 pathogenic mutations in the above 105 apparently unrelated FAP families. The mutations were predominantly either frameshifts (39/65) or single base substitutions (18/65), resulting in premature stop codons. Mutations that would predict abnormal RNA splicing were identified in seven cases. In one of the families, a nonconservative amino acid change was found to segregate with the disease. In spite of the large number of APC mutations reported to date, we identified 27 novel germline mutations in our patients, which reiterates the great heterogeneity of the mutation spectrum in FAP. In addition to the point mutations identified in our patients, structural rearrangements of APC were found in two pedigrees, by Southern blot analysis. The present study indicates that the combined use of DGGE, protein truncation test, and Southern blot analysis offers an efficient strategy for the presymptomatic diagnosis of FAP by direct mutation detection. We found that the combined use of the currently available molecular approaches still fails to identify the underlying genetic defect in a significant subset of the FAP families. The possible causes for this limitation are discussed.


Genes, Chromosomes and Cancer | 2005

Molecular characterization of the spectrum of genomic deletions in the mismatch repair genes MSH2, MLH1, MSH6, and PMS2 responsible for hereditary nonpolyposis colorectal cancer (HNPCC).

Heleen M. van der Klift; Juul T. Wijnen; Anja Wagner; Paul Verkuilen; Carli M. J. Tops; Robyn Otway; Maija Kohonen-Corish; Hans F. A. Vasen; Cristina Oliani; Daniela Barana; Pål Møller; Celia Delozier-Blanchet; Pierre Hutter; William D. Foulkes; Henry T. Lynch; John Burn; Gabriela Möslein; Riccardo Fodde

A systematic search by Southern blot analysis in a cohort of 439 hereditary nonpolyposis colorectal cancer (HNPCC) families for genomic rearrangements in the main mismatch repair (MMR) genes, namely, MSH2, MLH1, MSH6, and PMS2, identified 48 genomic rearrangements causative of this inherited predisposition to colorectal cancer in 68 unrelated kindreds. Twenty‐nine of the 48 rearrangements were found in MSH2, 13 in MLH1, 2 in MSH6, and 4 in PMS2. The vast majority were deletions, although one previously described large inversion, an intronic insertion, and a more complex rearrangement also were found. Twenty‐four deletion breakpoints have been identified and sequenced in order to determine the underlying recombination mechanisms. Most fall within repetitive sequences, mainly Alu repeats, in agreement with the differential distribution of deletions between the MSH2 and MLH1 genes: the higher number and density of Alu repeats in MSH2 corresponded with a higher incidence of genomic rearrangement at this disease locus when compared with other MMR genes. Long interspersed nuclear element (LINE) repeats, relatively abundant in, for example, MLH1, did not seem to contribute to the genesis of the deletions, presumably because of their older evolutionary age and divergence among individual repeat units when compared with short interspersed nuclear element (SINE) repeats, including Alu repeats. Moreover, Southern blot analysis of the introns and the genomic regions flanking the MMR genes allowed us to detect 6 novel genomic rearrangements that left the coding region of the disease‐causing gene intact. These rearrangements comprised 4 deletions upstream of the coding region of MSH2 (3 cases) and MSH6 (1 case), a 2‐kb insertion in intron 7 of PMS2, and a small (459‐bp) deletion in intron 13 of MLH1. The characterization of these genomic rearrangements underlines the importance of genomic deletions in the etiology of HNPCC and will facilitate the development of PCR‐based tests for their detection in diagnostic laboratories.


Genomics | 1992

Eight novel inactivating germ line mutations at the APC gene identified by denaturing gradient gel electrophoresis

Riccardo Fodde; Rob B. van der Luijt; Juul T. Wijnen; Carli M. J. Tops; Heleen M. van der Klift; Inge van Leeuwen-Cornelisse; G. Griffioen; Hans F. A. Vasen; P. Meera Khan

Familial adenomatous polyposis (FAP) is a dominantly inherited condition predisposing to colorectal cancer. The recent isolation of the responsible gene (adenomatous polyposis coli or APC) has facilitated the search for germ line mutations in affected individuals. Previous authors have used the RNase protection assay and the single-strand conformation polymorphisms procedure to screen for mutations. In this study we used denaturing gradient gel electrophoresis (DGGE). DGGE analysis of 10 APC exons (4, 5, 7, 8, 9, 10, 12, 13, 14, and part of 15) in 33 unrelated Dutch FAP patients has led to the identification of eight novel germ line mutations resulting in stop codons or frameshifts. The results reported here indicate that (1) familial adenomatous polyposis is caused by an extremely heterogeneous spectrum of point mutations; (2) all the mutations found in this study are chain terminating; and (3) DGGE represents a rapid and sensitive technique for the detection of mutations in the unusually large APC gene. An extension of the DGGE analysis to the entire coding region in a sufficient number of clinically well-characterized, unrelated patients will facilitate the establishment of genotype-phenotype correlations. On the other hand, the occurrence of an extremely heterogeneous spectrum of mutations spread throughout the entire length of the large APC gene among the FAP patients indicates that this approach may not be useful as a rapid presymptomatic diagnostic procedure in a routine laboratory. Nevertheless, the above DGGE approach has incidentally led to the identification of a common polymorphism in exon 13. Such intragenic polymorphisms offer a practical approach to a more rapid procedure for presymptomatic diagnosis of FAP by linkage analysis in informative families.


Journal of Clinical Oncology | 2015

Lynch Syndrome Caused by Germline PMS2 Mutations: Delineating the Cancer Risk

Sanne W. ten Broeke; Richard Brohet; Carli C. Tops; Heleen M. van der Klift; M.E. Velthuizen; Inge Bernstein; Gabriel Capellá Munar; Encarna Gomez Garcia; Nicoline Hoogerbrugge; Tom G. W. Letteboer; Fred F. Menko; Annika A. Lindblom; Arjen R. Mensenkamp; Pål Møller; Theo A. van Os; Nils Rahner; Bert Redeker; Rolf H. Sijmons; Liesbeth Spruijt; Manon Suerink; Yvonne J. Vos; Anja Wagner; Frederik J. Hes; Hans Vasen; Maartje Nielsen; Juul T. Wijnen

PURPOSE The clinical consequences of PMS2 germline mutations are poorly understood compared with other Lynch-associated mismatch repair gene (MMR) mutations. The aim of this European cohort study was to define the cancer risk faced by PMS2 mutation carriers. METHODS Data were collected from 98 PMS2 families ascertained from family cancer clinics that included a total of 2,548 family members and 377 proven mutation carriers. To adjust for potential ascertainment bias, a modified segregation analysis model was used to calculate colorectal cancer (CRC) and endometrial cancer (EC) risks. Standardized incidence ratios (SIRs) were calculated to estimate risks for other Lynch syndrome-associated cancers. RESULTS The cumulative risk (CR) of CRC for male mutation carriers by age 70 years was 19%. The CR among female carriers was 11% for CRC and 12% for EC. The mean age of CRC development was 52 years, and there was a significant difference in mean age of CRC between the probands (mean, 47 years; range, 26 to 68 years) and other family members with a PMS2 mutation (mean, 58 years; range, 31 to 86 years; P < .001). Significant SIRs were observed for cancers of the small bowel, ovaries, breast, and renal pelvis. CONCLUSION CRC and EC risks were found to be markedly lower than those previously reported for the other MMR. However, these risks embody the isolated risk of carrying a PMS2 mutation, and it should be noted that we observed a substantial variation in cancer phenotype within and between families, suggesting the influence of genetic modifiers and lifestyle factors on cancer risks.


Human Mutation | 2009

Intronic variants in BRCA1 and BRCA2 that affect RNA splicing can be reliably selected by splice-site prediction programs†

Maaike P.G. Vreeswijk; Jaennelle N. Kraan; Heleen M. van der Klift; Geraldine R. Vink; Cees J. Cornelisse; Juul T. Wijnen; Egbert Bakker; Christi J. van Asperen; Peter Devilee

A large number of sequence variants identified in BRCA1 and BRCA2 cannot be distinguished as either disease‐causing mutations or neutral variants. These so‐called unclassified variants (UVs) include variants that are located in the intronic sequences of BRCA1 and BRCA2. The purpose of this study was to assess the use of splice‐site prediction programs (SSPPs) to select intronic variants in BRCA1 and BRCA2 that are likely to affect RNA splicing. We performed in vitro molecular characterization of RNA of six intronic variants in BRCA1 and BRCA2. In four cases (BRCA1, c.81–6T>A and c.4986+5G>T; BRCA2, c.7617+2T>G and c.8754+5G>A) a deleterious effect on RNA splicing was seen, whereas the c.135‐15_‐12del variant in BRCA1 showed no effect on RNA splicing. In the case of the BRCA2 c.68–7T>A variant, RNA analysis was not sufficient to establish the clinical significance. Six SSPPs were used to predict whether an effect on RNA splicing was expected for these six variants as well as for 23 intronic variants in BRCA1 for which the effect on RNA splicing has been published. Out of a total of 174 predictions, 161 (93%) were informative (i.e., the wild‐type splice‐site was recognized). No false‐negative predictions were observed; an effect on RNA splicing was always predicted by these programs. In four cases (2.5%) a false‐positive prediction was observed. For DNA diagnostic laboratories, these programs are therefore very useful to select intronic variants that are likely to affect RNA splicing for further analysis. Hum Mutat 0,1–8, 2008.


American Journal of Medical Genetics Part A | 2003

Prostate cancer is part of the hereditary non‐polyposis colorectal cancer (HNPCC) tumor spectrum

Claudio Soravia; Heleen M. van der Klift; Marie-Anne Brundler; Jean-Louis Blouin; Juul T. Wijnen; Pierre Hutter; Riccardo Fodde; Célia Delozier-Blanchet

The recognized urologic tumor spectrum in hereditary non‐polyposis colon cancer includes ureteral and renal pelvis malignancies. Here, we report a family in which the proband, who had three metachronous adenocarcinomas of the colon and rectum (at ages 54, 57, and 60), presented with an adenocarcinoma of the prostate at age 61. Immunohistochemical (IHC) staining of colonic, rectal, and prostatic tumor tissues demonstrated lack of expression of both MSH2 and MSH6. Accordingly, microsatellite instability (MSI) was found in the rectal, colonic, and prostatic tumors. The kindred complies with the Amsterdam criteria for HNPCC, as five members over three generations had colorectal cancer. Molecular investigations were initiated when the probands son presented with an adenocarcinoma of the colon at age 35. Southern blotting analysis of genomic DNA led to identification of a novel genomic deletion encompassing exon 5 of the MSH2 gene. Although prostate cancer has occasionally been described in HNPCC families, to the best of our knowledge, this is the first report where the MSI and IHC analysis of the prostatic adenomcarcinoma clearly link its aetiology to the germline mismatch repair mutation. Hence, prostate cancer should be included in the HNPCC tumor spectrum.


European Journal of Cancer | 2011

Paediatric intestinal cancer and polyposis due to bi-allelic PMS2 mutations: Case series, review and follow-up guidelines

Johanna C. Herkert; Renée C. Niessen; Maria J.W. Olderode-Berends; Hermine E. Veenstra-Knol; Yvonne J. Vos; Heleen M. van der Klift; Rene Scheenstra; Carli M. J. Tops; A Karrenbeld; Frans Peters; Robert M. W. Hofstra; Jan H. Kleibeuker; Rolf H. Sijmons

BACKGROUND Bi-allelic germline mutations of one of the DNA mismatch repair genes, so far predominantly found in PMS2, cause constitutional MMR-deficiency syndrome. This rare disorder is characterised by paediatric intestinal cancer and other malignancies. We report the clinical, immunohistochemical and genetic characterisation of four families with bi-allelic germline PMS2 mutations. We present an overview of the published gastrointestinal manifestations of CMMR-D syndrome and propose recommendations for gastro-intestinal screening. METHODS AND RESULTS The first proband developed a cerebral angiosarcoma at age 2 and two colorectal adenomas at age 7. Genetic testing identified a complete PMS2 gene deletion and a frameshift c.736_741delinsTGTGTGTGAAG (p.Pro246CysfsX3) mutation. In the second family, both the proband and her brother had multiple intestinal adenomas, initially wrongly diagnosed as familial adenomatous polyposis. A splice site c.2174+1G>A, and a missense c.137G>T (p.Ser46Ile) mutation in PMS2 were identified. The third patient was diagnosed with multiple colorectal adenomas at age 11; he developed a high-grade dysplastic colorectal adenocarcinoma at age 21. Two intragenic PMS2 deletions were found. The fourth proband developed a cerebral anaplastic ganglioma at age 9 and a high-grade colerectal dysplastic adenoma at age 10 and carries a homozygous c.2174+1G>A mutation. Tumours of all patients showed microsatellite instability and/or loss of PMS2 expression. CONCLUSIONS Our findings show the association between bi-allelic germline PMS2 mutations and severe childhood-onset gastrointestinal manifestations, and support the notion that patients with early-onset gastrointestinal adenomas and cancer should be investigated for CMMR-D syndrome. We recommend yearly follow-up with colonoscopy from age 6 and simultaneous video-capsule small bowel enteroscopy from age 8.

Collaboration


Dive into the Heleen M. van der Klift's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carli M. J. Tops

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Riccardo Fodde

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Hans Morreau

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Anja Wagner

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Frederik J. Hes

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Peter Devilee

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pål Møller

Oslo University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge