Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Helen Blair is active.

Publication


Featured researches published by Helen Blair.


Journal of Medical Genetics | 2004

Identification of a mutation in synapsin I, a synaptic vesicle protein, in a family with epilepsy

C C Garcia; Helen Blair; M Seager; Alan Coulthard; S Tennant; M Buddles; Ann Curtis; Judith A. Goodship

A four generation family is described in which some men of normal intelligence have epilepsy and others have various combinations of epilepsy, learning difficulties, macrocephaly, and aggressive behaviour. As the phenotype in this family is distinct from other X linked recessive disorders linkage studies were carried out. Linkage analysis was done using X chromosome microsatellite polymorphisms to define the interval containing the causative gene. Genes from within the region were considered possible candidates and one of these, SYN1, was screened for mutations by direct DNA sequencing of amplified products. Microsatellite analysis showed that the region between MAOB (Xp11.3) and DXS1275 (Xq12) segregated with the disease. Two point linkage analysis demonstrated linkage with DXS1039, lod score 4·06 at θ = 0, and DXS991, 3·63 at θ = 0. Candidate gene analysis led to identification of a nonsense mutation in the gene encoding synapsin I that was present in all affected family members and female carriers and was not present in 287 control chromosomes. Synapsin I is a synaptic vesicle associated protein involved in the regulation of synaptogenesis and neurotransmitter release. The SYN1 nonsense mutation that was identified is the likely cause of the phenotype in this family.


Development | 2007

Evc is a positive mediator of Ihh-regulated bone growth that localises at the base of chondrocyte cilia

Victor L. Ruiz-Perez; Helen Blair; M. Elena Rodriguez-Andres; María José Blanco; Amy Wilson; Yu-Ning Liu; Colin Miles; Heiko Peters; Judith A. Goodship

EVC is a novel protein mutated in the human chondroectodermal dysplasia Ellis-van Creveld syndrome (EvC; OMIM: 225500). We have inactivated Evc in the mouse and show that Evc-/- mice develop an EvC-like syndrome, including short ribs, short limbs and dental abnormalities. lacZ driven by the Evc promoter revealed that Evc is expressed in the developing bones and the orofacial region. Antibodies developed against Evc locate the protein at the base of the primary cilium. The growth plate of Evc-/- mice shows delayed bone collar formation and advanced maturation of chondrocytes. Indian hedgehog (Ihh) is expressed normally in the growth plates of Evc-/- mice, but expression of the Ihh downstream genes Ptch1 and Gli1 was markedly decreased. Recent studies have shown that Smo localises to primary cilia and that Gli3 processing is defective in intraflagellar transport mutants. In vitro studies using Evc-/- cells demonstrate that the defect lies downstream of Smo. Chondrocyte cilia are present in Evc-/- mice and Gli3 processing appears normal by western blot analysis. We conclude that Evc is an intracellular component of the hedgehog signal transduction pathway that is required for normal transcriptional activation of Ihh target genes.


Vaccine | 2001

Targeting polymerised liposome vaccine carriers to intestinal M cells

M. Ann Clark; Helen Blair; Likan Liang; Robert N. Brey; David J. Brayden; Barry H. Hirst

Due to their transcytotic capability, intestinal M cells may represent an efficient potential route for oral vaccine delivery. We previously demonstrated that the lectin Ulex europaeus agglutinin 1 (UEA1, specific for alpha-L-fucose residues) selectively binds to mouse Peyers patch M cells and targets 0.5 microm polystyrene microparticles to these cells. Using a gut loop model we now demonstrate that covalently-membrane-bound UEA1 similarly targets polymerised liposomes (Orasomes, approximately 200 nm diameter), potential biocompatable oral vaccine delivery vehicles, to mouse M cells. Targeting was inhibited by alpha-L-fucose while the co-entrapped adjuvant, monophosphoryl Lipid A (MPL), failed to exert any detrimental effect on UEA1-mediated M cell targeting. Lectin-mediated M cell targeting may thus permit the efficacy of mucosal vaccines to be enhanced if cellular relationship between particle binding and immune outcome can be established.


Blood | 2014

Ras pathway mutations are prevalent in relapsed childhood acute lymphoblastic leukemia and confer sensitivity to MEK inhibition

Julie Irving; Elizabeth Matheson; Lynne Minto; Helen Blair; Marian Case; Christina Halsey; Isabella Swidenbank; Frida Ponthan; Renate Kirschner-Schwabe; Stefanie Groeneveld-Krentz; Jana Hof; James M. Allan; Christine J. Harrison; Josef Vormoor; Arend von Stackelberg; Cornelia Eckert

For most children who relapse with acute lymphoblastic leukemia (ALL), the prognosis is poor, and there is a need for novel therapies to improve outcome. We screened samples from children with B-lineage ALL entered into the ALL-REZ BFM 2002 clinical trial (www.clinicaltrials.gov, #NCT00114348) for somatic mutations activating the Ras pathway (KRAS, NRAS, FLT3, and PTPN11) and showed mutation to be highly prevalent (76 from 206). Clinically, they were associated with high-risk features including early relapse, central nervous system (CNS) involvement, and specifically for NRAS/KRAS mutations, chemoresistance. KRAS mutations were associated with a reduced overall survival. Mutation screening of the matched diagnostic samples found many to be wild type (WT); however, by using more sensitive allelic-specific assays, low-level mutated subpopulations were found in many cases, suggesting that they survived up-front therapy and subsequently emerged at relapse. Preclinical evaluation of the mitogen-activated protein kinase kinase 1/2 inhibitor selumetinib (AZD6244, ARRY-142886) showed significant differential sensitivity in Ras pathway-mutated ALL compared with WT cells both in vitro and in an orthotopic xenograft model engrafted with primary ALL; in the latter, reduced RAS-mutated CNS leukemia. Given these data, clinical evaluation of selumetinib may be warranted for Ras pathway-mutated relapsed ALL.


BMC Biology | 2011

Evc2 is a positive modulator of Hedgehog signalling that interacts with Evc at the cilia membrane and is also found in the nucleus

Helen Blair; Stuart W. Tompson; Yu-Ning Liu; Jennifer Campbell; Katie MacArthur; Chris P. Ponting; Victor L. Ruiz-Perez; Judith A. Goodship

BackgroundEvc is essential for Indian Hedgehog (Hh) signalling in the cartilage growth plate. The gene encoding Evc2 is in close proximity in divergent orientation to Evc and mutations in both human genes lead to the chondrodysplasia Ellis-van Creveld syndrome.ResultsBioinformatic analysis reveals that the Evc and Evc2 genes arose through a duplication event early in metazoan evolution and were subsequently lost in arthropods and nematodes. Here we demonstrate that Evc2 is essential for Hh pathway activation in response to the Smo agonist purmorphamine. A yeast two-hybrid screen using Evc as bait identified Evc2 as an Evc binding partner and we confirmed the interaction by immunoprecipitation. We developed anti-Evc2 antibodies and show that Evc2 and Evc co-localize at the basal body and also on primary cilia. In transfected cells, basal body and cilia localization is observed when Evc and Evc2 constructs are co-transfected but not when either construct is transfected individually. We show that Evc and Evc2 are cilia transmembrane proteins, the C-terminus for both being intracellular and Evc2, but not Evc, having an extracellular portion. Furthermore, Evc is absent at the basal body in Evc2 null cells. Using Western blots of cytoplasmic and nuclear protein, we also demonstrate that full length Evc2 but not Evc, is located in the nucleus.ConclusionsWe demonstrate for the first time that Evc2 is a positive regulator of the Hh signalling pathway and that it is located at the basal body of primary cilia. We show that the presence of Evc and Evc2 at the basal body and cilia membrane is co-dependent. In addition, Evc2, but not Evc, is present in the cell nucleus suggesting movement of Evc2 between the cilium and nucleus.


Leukemia | 2014

Differential expression of miR-17~92 identifies BCL2 as a therapeutic target in BCR-ABL-positive B-lineage acute lymphoblastic leukemia.

Michaela Scherr; Alex Elder; Karin Battmer; David Barzan; Simon Bomken; Melanie Ricke-Hoch; Anke Schröder; Letizia Venturini; Helen Blair; Josef Vormoor; Oliver G. Ottmann; Arnold Ganser; Andreas Pich; Denise Hilfiker-Kleiner; Olaf Heidenreich; Matthias Eder

Despite advances in allogeneic stem cell transplantation, BCR-ABL-positive acute lymphoblastic leukaemia (ALL) remains a high-risk disease, necessitating the development of novel treatment strategies. As the known oncomir, miR-17∼92, is regulated by BCR-ABL fusion in chronic myeloid leukaemia, we investigated its role in BCR-ABL translocated ALL. miR-17∼92-encoded miRNAs were significantly less abundant in BCR-ABL-positive as compared to -negative ALL-cells and overexpression of miR-17∼19b triggered apoptosis in a BCR-ABL-dependent manner. Stable isotope labelling of amino acids in culture (SILAC) followed by liquid chromatography and mass spectroscopy (LC-MS) identified several apoptosis-related proteins including Bcl2 as potential targets of miR-17∼19b. We validated Bcl2 as a direct target of this miRNA cluster in mice and humans, and, similar to miR-17∼19b overexpression, Bcl2-specific RNAi strongly induced apoptosis in BCR-ABL-positive cells. Furthermore, BCR-ABL-positive human ALL cell lines were more sensitive to pharmacological BCL2 inhibition than negative ones. Finally, in a xenograft model using patient-derived leukaemic blasts, real-time, in vivo imaging confirmed pharmacological inhibition of BCL2 as a new therapeutic strategy in BCR-ABL-positive ALL. These data demonstrate the role of miR-17∼92 in regulation of apoptosis, and identify BCL2 as a therapeutic target of particular relevance in BCR-ABL-positive ALL.


Blood | 2016

The ability to cross the blood-cerebrospinal fluid barrier is a generic property of acute lymphoblastic leukemia blasts.

Mark Williams; Yasar Mehmood Yousafzai; Alex Elder; Klaus Rehe; Simon Bomken; Liron Frishman-Levy; Sigal Tavor; Paul Sinclair; Katie Dormon; Dino Masic; Tracey Perry; Victoria J Weston; Pamela Kearns; Helen Blair; Lisa J. Russell; Olaf Heidenreich; Julie Irving; Shai Izraeli; Josef Vormoor; Gerard J. Graham; Christina Halsey

Prevention of central nervous system (CNS) relapse is critical for cure of childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Despite this, mechanisms of CNS infiltration are poorly understood, and the timing, frequency, and properties of BCP-ALL blasts entering the CNS compartment are unknown. We investigated the CNS-engrafting potential of BCP-ALL cells xenotransplanted into immunodeficient NOD.Cg- ITALIC! Prkdc (ITALIC! scid) ITALIC! Il2rg (ITALIC! tm1Wjl)/SzJ mice. CNS engraftment was seen in 23 of 29 diagnostic samples (79%): 2 of 2 from patients with overt CNS disease and 21 of 27 from patients thought to be CNS negative by diagnostic lumbar puncture. Histologic findings mimic human pathology and demonstrate that leukemic cells transit the blood-cerebrospinal fluid barrier situated close to the dural sinuses, the site of recently discovered CNS lymphatics. Retrieval of blasts from the CNS showed no evidence for chemokine receptor-mediated selective trafficking. The high frequency of infiltration and lack of selective trafficking led us to postulate that CNS tropism is a generic property of leukemic cells. To test this, we performed serial dilution experiments which showed CNS engraftment in 5 of 6 mice after transplant of as few as 10 leukemic cells. Clonal tracking techniques confirmed the polyclonal nature of CNS-infiltrating cells, with multiple clones engrafting in both the CNS and periphery. Overall, these findings suggest that subclinical seeding of the CNS is likely to be present in most BCP-ALL patients at original diagnosis, and efforts to prevent CNS relapse should concentrate on effective eradication of disease from this site rather than targeting entry mechanisms.


PLOS ONE | 2014

Development of a Preclinical Orthotopic Xenograft Model of Ewing Sarcoma and Other Human Malignant Bone Disease Using Advanced In Vivo Imaging

Britta Vormoor; Henrike Knizia; Michael A. Batey; Gilberto S. Almeida; Ian Wilson; Petra Dildey; Abhishek Sharma; Helen Blair; I. Geoff Hide; Olaf Heidenreich; Josef Vormoor; Ross J. Maxwell; Chris M. Bacon

Ewing sarcoma and osteosarcoma represent the two most common primary bone tumours in childhood and adolescence, with bone metastases being the most adverse prognostic factor. In prostate cancer, osseous metastasis poses a major clinical challenge. We developed a preclinical orthotopic model of Ewing sarcoma, reflecting the biology of the tumour-bone interactions in human disease and allowing in vivo monitoring of disease progression, and compared this with models of osteosarcoma and prostate carcinoma. Human tumour cell lines were transplanted into non-obese diabetic/severe combined immunodeficient (NSG) and Rag2−/−/γc−/− mice by intrafemoral injection. For Ewing sarcoma, minimal cell numbers (1000–5000) injected in small volumes were able to induce orthotopic tumour growth. Tumour progression was studied using positron emission tomography, computed tomography, magnetic resonance imaging and bioluminescent imaging. Tumours and their interactions with bones were examined by histology. Each tumour induced bone destruction and outgrowth of extramedullary tumour masses, together with characteristic changes in bone that were well visualised by computed tomography, which correlated with post-mortem histology. Ewing sarcoma and, to a lesser extent, osteosarcoma cells induced prominent reactive new bone formation. Osteosarcoma cells produced osteoid and mineralised “malignant” bone within the tumour mass itself. Injection of prostate carcinoma cells led to osteoclast-driven osteolytic lesions. Bioluminescent imaging of Ewing sarcoma xenografts allowed easy and rapid monitoring of tumour growth and detection of tumour dissemination to lungs, liver and bone. Magnetic resonance imaging proved useful for monitoring soft tissue tumour growth and volume. Positron emission tomography proved to be of limited use in this model. Overall, we have developed an orthotopic in vivo model for Ewing sarcoma and other primary and secondary human bone malignancies, which resemble the human disease. We have shown the utility of small animal bioimaging for tracking disease progression, making this model a useful assay for preclinical drug testing.


Leukemia | 2013

Lentiviral marking of patient-derived acute lymphoblastic leukaemic cells allows in vivo tracking of disease progression

Simon Bomken; Lars Buechler; Klaus Rehe; Frida Ponthan; Alex Elder; Helen Blair; Chris M. Bacon; Josef Vormoor; Olaf Heidenreich

Lentiviral marking of patient-derived acute lymphoblastic leukaemic cells allows in vivo tracking of disease progression


Genomics | 1992

Mapping of FMR1, the gene implicated in fragile X-linked mental retardation, on the mouse X chromosome

Steven H. Laval; Helen Blair; Mark C. Hirst; Kay E. Davies; Yvonne Boyd

A genetic map of the Cf-9 to Dmd region of the mouse X chromosome has been established by typing 100 offspring from a Mus musculus x Mus spretus interspecific backcross for the four loci Cf-9, Cdr, Gabra3, and Dmd. The following order and genetic distances in centimorgans were determined: (Cf-9)-2.4 +/- 1.7-(Cdr)-2.0 +/- 1.4-(Gabra3)-4.1 +/- 2.0-(Dmd). Six backcross offspring carrying X chromosomes with recombination events in the Cdr-Dmd region were identified. These recombination events were used to define the position of Fmr-1, the murine homologue of FMR1, which is the gene implicated in the fragile X syndrome in man, and that of DXS296h, the murine homologue of DXS296. Both Fmr-1 and DXS296h were mapped into the same recombination interval as Gabra3 on the mouse X chromosome. These findings provide strong support for the concept that the order of loci lying in the Cf-9 to Gabra3 segment of the X chromosome is highly conserved between human and mouse.

Collaboration


Dive into the Helen Blair's collaboration.

Top Co-Authors

Avatar

Yvonne Boyd

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vivienne Reed

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Victor L. Ruiz-Perez

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gail E. Herman

Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Stuart W. Tompson

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge