Helen Cathcart
Waterford Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Helen Cathcart.
Journal of Pharmaceutical Sciences | 2016
Shrawan Baghel; Helen Cathcart; Niall J. O'Reilly
Poor water solubility of many drugs has emerged as one of the major challenges in the pharmaceutical world. Polymer-based amorphous solid dispersions have been considered as the major advancement in overcoming limited aqueous solubility and oral absorption issues. The principle drawback of this approach is that they can lack necessary stability and revert to the crystalline form on storage. Significant upfront development is, therefore, required to generate stable amorphous formulations. A thorough understanding of the processes occurring at a molecular level is imperative for the rational design of amorphous solid dispersion products. This review attempts to address the critical molecular and thermodynamic aspects governing the physicochemical properties of such systems. A brief introduction to Biopharmaceutical Classification System, solid dispersions, glass transition, and solubility advantage of amorphous drugs is provided. The objective of this review is to weigh the current understanding of solid dispersion chemistry and to critically review the theoretical, technical, and molecular aspects of solid dispersions (amorphization and crystallization) and potential advantage of polymers (stabilization and solubilization) as inert, hydrophilic, pharmaceutical carrier matrices. In addition, different preformulation tools for the rational selection of polymers, state-of-the-art techniques for preparation and characterization of polymeric amorphous solid dispersions, and drug supersaturation in gastric media are also discussed.
Journal of the American Chemical Society | 2008
Helen Cathcart; Valeria Nicolosi; J. Marguerite Hughes; Werner J. Blau; John M. Kelly; Susan J. Quinn; Jonathan N. Coleman
An extensive study of the time dependence of DNA wrapping in single-walled nanotube (SWNT) dispersions has been carried out, revealing a number of unusual phenomena. SWNTs were dispersed in water with salmon testes DNA and monitored over a three-month period. Between 20 and 50 days after the sample was first prepared, the SWNT photoluminescence (PL) intensity was observed to increase by a factor of 50. This increase was accompanied by a considerable sharpening of the van Hove absorption peaks. High-resolution transmission electron microscopy (HRTEM) images showed the progressive formation of a coating of DNA on the walls of the nanotubes over the three-month period. HRTEM and circular dichroism spectroscopy studies showed that the improvement in both the NIR PL intensity and the van Hove absorption peaks coincided with the completion of a monolayer coating of DNA on the SWNT walls. HRTEM images clearly showed the DNA wrapping helically around the SWNTs in a surprisingly ordered fashion. We suggest that the initial quenching of NIR photoluminescence and broadening of absorption peaks is related to the presence of protonated surface oxides on the nanotubes. The presence of an ordered DNA coating on the nanotube walls mediates both deprotonation and removal of the surface oxides. An extensive DNA coating is required to substantially restore the photoluminescence, and thus, the luminescence switch-on and subsequent saturation indicate the completion of the DNA-wrapping process. The temperature dependence of the PL switch-on, and thus of the wrapping process, was investigated by measuring as functions of temperature both the time before PL switch-on and the time required for the PL intensity to saturate. This allowed the calculation of the activation energies for both the process preceding PL switch-on and the process limiting the rise of PL intensity, which were found to be 31 and 41 kJ mol (-1), respectively. The associated entropies of activation were -263 and -225 J mol (-1) K (-1), respectively. These negative activation entropies suggest that the rate-limiting step is characterized by a change in the system from a less-ordered to a more-ordered state, consistent with the formation of an ordered DNA coating.
Biomacromolecules | 2008
Valeria Nicolosi; Helen Cathcart; A. Dalton; Damian Aherne; Gregg R. Dieckmann; Jonathan N. Coleman
We have observed concentration dependent exfoliation of single-walled carbon nanotubes dispersed in solutions of the synthetic peptide nano-1. As the nanotube concentration is reduced, the bundle diameters tend to decrease before saturating at <2.0 nm for concentrations below 6 x 10(-3) mg/mL. The fraction of individual nanotubes increases with decreasing concentration, saturating at approximately 95% at low concentration. This concentration dependent exfoliation happens even if the dispersions are not sonicated on dilution, albeit over a longer time scale. The populations both of individual nanotubes and of bundles are much higher than expected at high concentrations, indicating the presence of repulsive internanotube interactions stabilizing the dispersions.
European Journal of Pharmaceutics and Biopharmaceutics | 2016
Shrawan Baghel; Helen Cathcart; Niall J. O’Reilly
Amorphous solid dispersions (ASDs) have the potential to offer higher apparent solubility and bioavailability of BCS class II drugs. Knowledge of the solid state drug-polymer solubility/miscibility and their mutual interaction are fundamental requirements for the effective design and development of such systems. To this end, we have carried out a comprehensive investigation of various ASD systems of dipyridamole and cinnarizine in polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) at different drug loadings. Theoretical and experimental examinations (by implementing binary and ternary Flory-Huggins (F-H) theory) related to drug-polymer interaction/miscibility including solubility parameter approach, melting point depression method, phase diagram, drug-polymer interaction in the presence of moisture and the effect of drug loading on interaction parameter were performed. The information obtained from this study was used to predict the stability of ASDs at different drug loadings and under different thermal and moisture conditions. Thermal and moisture sorption analysis not only provided the composition-dependent interaction parameter but also predicted the composition dependent miscibility. DPM-PVP, DPM-PAA and CNZ-PAA systems have shown molecular level mixing over the complete range of drug loading. For CNZ-PVP, the presence of a single Tg at lower drug loadings (10, 20 and 35%w/w) indicates the formation of solid solution. However, drug recrystallization was observed for samples with higher drug weight fractions (50 and 65%w/w). Finally, the role of polymer in maintaining drug supersaturation has also been explored. It has been found that drug-polymer combinations capable of hydrogen-bonding in the solution state (DPM-PVP, DPM-PAA and CNZ-PAA) are more effective in preventing drug crystallization compared to the drug-polymer systems without such interaction (CNZ-PVP). The DPM-PAA system outperformed all other ASDs in various stability conditions (dry-state, in the presence of moisture and in solution state), which was attributed to the drugs low crystallization tendency, the strong DPM-PAA interaction, the robustness of this interaction against moisture or water and the ability of PAA in maintaining DPM supersaturation.
International Journal of Pharmaceutics | 2015
Cordula Weiss; Peter McLoughlin; Helen Cathcart
Inhalation formulations are a popular way of treating the symptoms of respiratory diseases. The active pharmaceutical ingredient (API) is delivered directly to the site of action within the deep lung using an inhalation device such as the dry powder inhaler (DPI). The performance of the formulation and the efficiency of the treatment depend on a number of factors including the forces acting between the components. In DPI formulations these forces are dominated by interparticulate interactions. Research has shown that adhesive and cohesive forces depend on a number of particulate properties such as size, surface roughness, crystallinity, surface energetics and combinations of these. With traditional methods the impact of particulate properties on interparticulate forces could be evaluated by examining the bulk properties. Atomic force microscopy (AFM), however, enables the determination of local surface characteristics and the direct measurement of interparticulate forces using the colloidal probe technique. AFM is considered extremely useful for evaluating the surface topography of a substrate (an API or carrier particle) and even allows the identification of crystal faces, defects and polymorphs from high-resolution images. Additionally, information is given about local mechanical properties of the particles and changes in surface composition and energetics. The assessment of attractive forces between two bodies is possible by using colloidal probe AFM. This review article summarises the application of AFM in DPI formulations while specifically focussing on the colloidal probe technique and the evaluation of interparticulate forces.
International Journal of Pharmaceutics | 2018
Shrawan Baghel; Helen Cathcart; Niall J. O’Reilly
In this study, the dissolution behaviour of dipyridamole (DPM) and cinnarizine (CNZ) spray-dried amorphous solid dispersions (ASDs) using polyvinyl pyrrolidone (PVP) and polyacrylic acid (PAA) as a carrier matrix were evaluated and compared. The drug concentrations achieved from the dissolution of PVP and PAA solid dispersions were significantly greater than the equilibrium solubility of crystalline DPM and CNZ in phosphate buffer pH 6.8 (PBS 6.8). The maximum drug concentration achieved by dissolution of PVP and PAA solid dispersions did not exceed the theoretically calculated apparent solubility of amorphous DPM and CNZ. However, the degree of supersaturation of DPM and CNZ increased considerably as the polymer weight fraction within the solid dispersion increased. In addition, the supersaturation profile of DPM and CNZ were studied in the presence and absence of the polymers. PAA was found to maintain a higher level of supersaturation compared to PVP. The enhanced drug solution concentration following dissolution of ASDs can be attributed to the reduced crystal growth rates of DPM and CNZ at an equivalent supersaturation. We have also shown that, for drugs having high crystallization tendency and weak drug-polymer interaction, the feasible way to increase dissolution might be increase the polymer weight fraction in the ASD. Solution 1H NMR spectra were used to understand dissolution mechanism and to identify drug-polymer interaction. The change in electron densities of proton attached to different groups in DPM and CNZ suggested drug-polymer interaction in solution. The relative intensities of peak shift and nature of interaction between drug and polymer in different systems are different. These different effects suggest that DPM and CNZ interacts in a different way with PVP and PAA in solution which goes some way towards explaining the different polymeric effect, particularly in terms of inhibition of drug recrystallization and dissolution of DPM and CNZ ASDs. These results established that the different drug/polymer interactions in the solid state and in solution give rise to the variation in dissolution profile observed for different systems.
Molecular Pharmaceutics | 2018
Shrawan Baghel; Helen Cathcart; Niall J. O'Reilly
The formulation of oral amorphous solid dispersions (ASD) includes the use of excipients to improve physical stability and enhance bioavailability. Combinations of excipients (polymers and surfactants) are often employed in pharmaceutical products to improve the delivery of poorly water-soluble drugs. However, additive interactions in multicomponent ASD systems have not been extensively studied and may promote crystallization in an unpredictable manner, which in turn may affect the physical stability and dissolution profile of the product. The main aim of this study was to understand the effect of different surfactant and polymer combinations on the solid-state properties and dissolution behavior of ternary spray-dried solid dispersions of dipyridamole and cinnarizine. The surfactants chosen for this study were sodium dodecyl sulfate and poloxamer 188, and the model polymers used were polyvinylpyrrolidone K30 and hydroxypropyl methylcellulose K100. The spray-dried ternary dispersions maintained higher supersaturation compared to either the crystalline drug equilibrium solubility or their respective physical mixtures. However, rapid and variable dissolution behavior was observed for different formulations. The maximum supersaturation level was observed with drug-polymer-polymer ternary dispersions. On the other hand, incorporating the surfactant into binary (drug-polymer) and ternary (drug-polymer-polymer) ASDs adversely affected the physical stability and dissolution by promoting crystallization. On the basis of these observations, a thorough investigation into the impact of combinations of additives on amorphous drug crystallization during dissolution and stability studies is recommended in order to develop optimized formulations of supersaturating dosage forms.
Journal of Physical Chemistry C | 2007
Helen Cathcart; Susan J. Quinn; Valeria Nicolosi; John M. Kelly; Werner J. Blau; Jonathan N. Coleman
Journal of Physical Chemistry C | 2008
Shane D. Bergin; Valeria Nicolosi; Helen Cathcart; Mustafa Lotya; David Rickard; Zhenyu Sun; Werner J. Blau; Jonathan N. Coleman
Chemical Physics Letters | 2009
Helen Cathcart; Jonathan N. Coleman