Helen-Catherine Leligou
National Technical University of Athens
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Helen-Catherine Leligou.
transactions on emerging telecommunications technologies | 2010
Theodore B. Zahariadis; Helen-Catherine Leligou; Panagiotis Trakadas; Stamatis Voliotis
SUMMARY The range of applications of wireless sensor networks is so wide that it tends to invade our every day life. In the future, a sensor network will survey our health, our home, the roads we follow, the office or the industry we work in or even the aircrafts we use, in an attempt to enhance our safety. However, the wireless sensor networks themselves are prone to security attacks. The list of security attacks, although already very long, continues to augment impeding the expansion of these networks. The trust management schemes consist of a powerful tool for the detection of unexpected node behaviours (either faulty or malicious). Once misbehaving nodes are detected, their neighbours can use this information to avoid cooperating with them, either for data forwarding, data aggregation or any other cooperative function. A variety of trust models which follow different directions regarding the distribution of measurement functionality, the monitored behaviours and the way measurements are used to calculate/define the node’s trustworthiness has been presented in the literature. In this paper, we survey trust models in an attempt to explore the interplay among the implementation requirements, the resource consumption and the achieved security. Our goal is to draw guidelines for the design of deployable trust model designs with respect to the available node and network capabilities and application peculiarities. Copyright
IEEE Communications Magazine | 2004
John D. Angelopoulos; Helen-Catherine Leligou; T. Argyriou; S. Zontos; Edwin Augustus Philomena Ringoot; T. Van Caenegem
The standardization of passive optical networks capable of transporting Ethernet frames at gigabit-per-second speeds, currently in progress in both ITU-T and IEEE, constitutes a major milestone toward cost-effective photonization of the last (aka first) mile. The article presents an Ethernet gigabit PON (GPON) system aligned with the philosophy of the evolving FSAN (full service access network) ITU-T specification, which focuses on the efficient support of any level of quality of service. The intelligence of this system, in terms of traffic quality guarantees, lies in the MAC protocol, which controls the distributed multiplexing/concentration function by allocating variable length slots to every user of the shared upstream (toward the network) medium. The way transport of information is organized in an ITU-T GPON system and the operation of a MAC protocol that preserves all QoS guarantees are presented and evaluated.
Wireless Personal Communications | 2013
Theodore B. Zahariadis; Panagiotis Trakadas; Helen-Catherine Leligou; Sotiris Maniatis; Panagiotis Karkazis
AbstractWireless sensor networks are vulnerable to a wide set of security attacks, including those targeting the routing protocol functionality. The applicability of legacy security solutions is disputable (if not infeasible), due to severe restrictions in node and network resources. Although confidentiality, integrity and authentication measures assist in preventing specific types of attacks, they come at high cost and, in most cases, cannot shield against routing attacks. To face this problem, we propose a secure routing protocol which adopts the geographical routing principle to cope with the network dimensions, and relies on a distributed trust model for the detection and avoidance of malicious neighbours. A novel function which adaptively weights location, trust and energy information drives the routing decisions, allowing for shifting emphasis from security to path optimality. The proposed trust model relies on both direct and indirect observations to derive the trustworthiness of each neighboring node, while it is capable of defending against an increased set of routing attacks including attacks targeting the indirect trust management scheme. Extensive simulation results reveal the advantages of the proposed model.
Eurasip Journal on Wireless Communications and Networking | 2012
Lambros Sarakis; Theodore B. Zahariadis; Helen-Catherine Leligou; Mischa Dohler
The majority of research and development efforts in the area of Wireless Sensor Networks (WSNs) focus on WSN systems that are dedicated for a specific application. However, this trend is currently being replaced by resource-rich WSN deployments that are expected to provide capabilities in excess of any applications requirements. In this regard, the concept of virtual sensor networking is an emerging approach that enables the decoupling of the physical sensor deployment from the applications running on top of it, allowing in this way the dynamic collaboration of a subset of sensor nodes and helping the proliferation of new services and applications beyond the scope of the original deployment. In this context, the article presents the architecture of a system for the realization of Virtual Sensor Networks (VSNs). The aim of the proposed architecture is to enable the realization of scalable, flexible, adaptive, energy-efficient, and trust-aware VSN platforms, focusing on the reduction of deployment complexity and management cost, and on advanced interoperability mechanisms. The efforts have been put towards specifying a service provisioning architecture and mechanisms for advanced sensor and middleware design.
International Journal of Communication Systems | 2006
Helen-Catherine Leligou; Charalambos Linardakis; Konstantinos Kanonakis; John D. Angelopoulos; Theofanis Orphanoudakis
SUMMARY The steadily rising demand for multimedia and data services, the falling cost and omnipresence of Ethernet and the maturity of passive optical networks (PON) technology, promise to radically change the landscape in the local loop. The heart of a gigabit PON system (recently standardized by FSAN/ITU) is the medium access controller (MAC), which arbitrates access to the upstream link among users with fluctuating traffic demands and effects the multiplexing and concentration policy. At the same time, it has to safeguard the service quality and enforce the parameters agreed in the service level agreements (SLAs) between the users and the service provider. In this paper, a MAC protocol designed to serve any mix of services according to their quality of service (QoS) needs, employing four priority levels along with a high number of logically separate data queues is presented. The architecture and implementation in hardware of a MAC algorithm capable of allocating bandwidth down to a resolution of a byte with QoS differentiation is the focus of this paper. It employs the bandwidth arbitration tools of the FSAN/ITU G.984.3 standard and maps SLA parameters to GPON service parameters to create an efficient, fair and flexible residential access system. Copyright # 2005 John Wiley & Sons, Ltd.
international conference on telecommunications | 2012
Panagiotis Karkazis; Helen-Catherine Leligou; Lambros Sarakis; Theodore B. Zahariadis; Panagiotis Trakadas; Terpsichori Helen Velivassaki; Christos N. Capsalis
The diversity of applications that current and emerging Wireless Sensor Networks (WSNs) are called to support imposes different requirements on the underlying network with respect to delay and loss, while at the same time the WSN imposes its own intricacies. The satisfaction of these requirements highly depends on the metric upon which the forwarding routes are decided. In this view, the IETF ROLL group has proposed the RPL routing protocol, which can flexibly work on various routing metrics, as long as they hold specific properties. The system implementer/user is free to decide whether to use one or multiple routing metrics, as well as the way these metrics can be combined. In this paper, we provide ways to quantify the routing metrics so that they can be combined in an additive or lexical manner. We use extensive simulation results to evaluate the impact of several routing metrics on the achieved performance.
communications and mobile computing | 2012
Helen-Catherine Leligou; Panagiotis Trakadas; Sotirios Maniatis; Panagiotis Karkazis; Theodore B. Zahariadis
As the applications of wireless sensor networks proliferate, the efficiency in supporting large sensor networks and offering security guarantees becomes an important requirement in the design of the relevant networking protocols. Geographical routing has been proven to efficiently cope with large network dimensions while trust management schemes have been shown to assist in defending against routing attacks. Once trust information is available for all network nodes, the routing decisions can take it into account, i.e. routing can be based on both location and trust attributes. In this paper, we investigate different ways to incorporate trust in location-based routing schemes and we propose a novel way of balancing trust and location information. Computer simulations show that the proposed routing rule exhibits excellent performance in terms of delivery ratio, latency time and path optimality. Copyright
Wireless Networks | 2013
Panagiotis Karkazis; Panagiotis Trakadas; Helen-Catherine Leligou; Lambros Sarakis; Ioannis Papaefstathiou; Theodore B. Zahariadis
The use of Wireless Sensor Networks (WSN) in a wide variety of application domains has been intensively pursued lately while Future Internet designers consider WSN as a network architecture paradigm that provides abundant real-life real-time information which can be exploited to enhance the user experience. The wealth of applications running on WSNs imposes different Quality of Service requirements on the underlying network with respect to delay, reliability and loss. At the same time, WSNs present intricacies such as limited energy, node and network resources. To meet the application’s requirements while respecting the characteristics and limitations of the WSN, appropriate routing metrics have to be adopted by the routing protocol. These metrics can be primary (e.g. expected transmission count) to capture a specific effect (e.g. link reliability) and achieve a specific goal (e.g. low number of retransmissions to economize resources) or composite (e.g. combining latency with remaining energy) to satisfy different applications needs and WSNs requirements (e.g. low latency and energy consumption at the same time). In this paper, (a) we specify primary routing metrics and ways to combine them into composite routing metrics, (b) we prove (based on the routing algebra formalism) that these metrics can be utilized in such a way that the routing protocol converges to optimal paths in a loop-free manner and (c) we apply the proposed approach to the RPL protocol specified by the ROLL group of IETF for such low power and lossy link networks to quantify the achieved performance through extensive computer simulations.
international symposium on autonomous decentralized systems | 2009
Panagiotis Trakadas; Sotiris Maniatis; Panagiotis Karkazis; Theodore B. Zahariadis; Helen-Catherine Leligou; Stamatis Voliotis
Security has been recognised as a key issue for the expansion of wireless sensor network applications. To defend against the wide set of security attacks, legacy security solutions are not applicable due to the very limited memory and processing resources of the sensor nodes as well as due to the reason that sensor networks are required to operate in an autonomous infrastructureless manner. Trust management schemes consist a powerful tool for the detection of unexpected node behaviours (either faulty or malicious). Once misbehaving nodes are detected, their neighbours can use these information to avoid cooperating with them either for data forwarding, data aggregation or any other cooperative function. We propose a novel trust management system based on both direct and indirect trust information, which allows for fast detection of a wide set of attacks, including those addressing the reputation exchange scheme, while energy awareness is also incorporated in our approach.
international conference on networked sensing systems | 2012
Panagiotis Karkazis; Panagiotis Trakadas; Theodore B. Zahariadis; Antonis Hatziefremidis; Helen-Catherine Leligou
Recently, Routing Protocol for Low Power and Lossy Networks (RPL) has been proposed by IETF ROLL WG in order to cope with Low Power and Lossy Networks (LLN) requirements implied by different application domains. In this paper, we present RPL modeling in J-Sim simulation environment, providing a complete simulation framework for performance evaluation as well as experimentation on open issues, such as the support of multiple instances and the definition of routing strategies based on the composition of several metrics.