Helen Dooley
University of Maryland, Baltimore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Helen Dooley.
Molecular Immunology | 2003
Helen Dooley; Martin F. Flajnik; Andrew Porter
The novel immunoglobulin isotype novel antigen receptor (IgNAR) is found in cartilaginous fish and is composed of a heavy-chain homodimer that does not associate with light chains. The variable regions of IgNAR function as independent domains similar to those found in the heavy-chain immunoglobulins of Camelids. Here, we describe the successful cloning and generation of a phage-displayed, single-domain library based upon the variable domain of IgNAR. Selection of such a library generated from nurse sharks (Ginglymostoma cirratum) immunized with the model antigen hen egg-white lysozyme (HEL) enabled the successful isolation of intact antigen-specific binders matured in vivo. The selected variable domains were shown to be functionally expressed in Escherichia coli, extremely stable, and bind to antigen specifically with an affinity in the nanomolar range. This approach can therefore be considered as an alternative route for the isolation of minimal antigen-binding fragments with favorable characteristics.
European Journal of Immunology | 2005
Helen Dooley; Martin F. Flajnik
The cartilaginous fish are the oldest phylogenetic group in which all of the molecular components of the adaptive immune system have been found. Although early studies clearly showed that sharks could produce an IgM‐based response following immunization, evidence for memory, affinity maturation and roles for the other isotypes (notably IgNAR) in this group remained inconclusive. The data presented here illustrate that the nurse shark (Ginglymostoma cirratum) is able to produce not only an IgM response, but we also show for the first time a highly antigen‐specific IgNAR response. Additionally, under appropriate conditions, a memory response for both isotypes can be elicited. Analysis of the response shows differential expression of pentameric and monomeric IgM. Pentameric IgM provides the ‘first line of defense’ through high‐avidity, low‐affinity interaction with antigen. In contrast, monomeric IgM and IgNAR seem responsible for the specific, antigen‐driven response. We propose the presence of distinct lineages of B cells in sharks. As there is no conventional isotype switching, each lineage seems pre‐determined to express a single isotype (IgM versus IgNAR). However, our data suggest that there may also be specific lineages for the different forms (pentameric versus monomeric) of the IgM isotype.
Biotechnology and Applied Biochemistry | 1998
Helen Dooley; Steven D. Grant; William J. Harris; Andrew Porter
Antibody fragments have the potential to be used as sensitive and specific binding agents in a broad range of industrial applications. Genetic manipulation has been used to design a series of antibody fragment configurations with a flexible linker and/or a disulphide bond between the heavy chain and light chain of an antibody fragment against the herbicide atrazine. The thermostability and stability to a range of denaturants, polar and non‐polar solvents, surfactants and proteases have been compared. It has been found that a novel antibody fragment construct (STAB: stabilized antibody) containing both a flexible linker and a disulphide bond can be effectively produced and shows greatly improved stability in these diverse environments. These STABs should be useful in environmental diagnostics and remediation, and may provide a generic approach for stabilizing antibody fragments in formulations containing detergents and penetrants for topical application in the pharmaceutical and cosmetic industries.
BMC Immunology | 2004
Lynn L. Rumfelt; Rebecca L. Lohr; Helen Dooley; Martin F. Flajnik
BackgroundAdult cartilaginous fish express three immunoglobulin (Ig) isotypes, IgM, IgNAR and IgW. Newborn nurse sharks, Ginglymostoma cirratum, produce 19S (multimeric) IgM and monomeric/dimeric IgM1gj, a germline-joined, IgM-related VH, and very low amounts of 7S (monomeric) IgM and IgNAR proteins. Newborn IgNAR VH mRNAs are diverse in the complementarity-determining region 3 (CDR3) with non-templated nucleotide (N-region) addition, which suggests that, unlike in many other vertebrates, terminal deoxynucleotidyl transferase (TdT) expressed at birth is functional. IgW is present in the lungfish, a bony fish sharing a common ancestor with sharks 460 million years ago, implying that the IgW VH family is as old as the IgM VH family. This nurse shark study examined the IgM and IgW VH repertoire from birth through adult life, and analyzed the phylogenetic relationships of these gene families.ResultsIgM and IgW VH cDNA clones isolated from newborn nurse shark primary and secondary lymphoid tissues had highly diverse and unique CDR3 with N-region addition and VDJ gene rearrangement, implicating functional TdT and RAG gene activity. Despite the clear presence of N-region additions, newborn CDR3 were significantly shorter than those of adults. The IgM clones are all included in a conventional VH family that can be classified into five discrete groups, none of which is orthologous to IgM VH genes in other elasmobranchs. In addition, a novel divergent VH family was orthologous to a published monotypic VH horn shark family. IgW VH genes have diverged sufficiently to form three families. IgM and IgW VH serine codons using the potential somatic hypermutation hotspot sequence occur mainly in VH framework 1 (FR1) and CDR1. Phylogenetic analysis of cartilaginous fish and lungfish IgM and IgW demonstrated they form two major ancient gene groups; furthermore, these VH genes generally diversify (duplicate and diverge) within a species.ConclusionAs in ratfish, sandbar and horn sharks, most nurse shark IgM VH genes are from one family with multiple, heterogeneous loci. Their IgW VH genes have diversified, forming at least three families. The neonatal shark Ig VH CDR3 repertoire, diversified via N-region addition, is shorter than the adult VDJ junction, suggesting one means of postnatal repertoire diversification is expression of longer CDR3 junctions.
Biomolecules | 2014
Rita Pettinello; Helen Dooley
Although lymphocyte-like cells secreting somatically-recombining receptors have been identified in the jawless fishes (hagfish and lamprey), the cartilaginous fishes (sharks, skates, rays and chimaera) are the most phylogenetically distant group relative to mammals in which bona fide immunoglobulins (Igs) have been found. Studies of the antibodies and humoral immune responses of cartilaginous fishes and other cold-blooded vertebrates (bony fishes, amphibians and reptiles) are not only revealing information about the emergence and roles of the different Ig heavy and light chain isotypes, but also the evolution of specialised adaptive features such as isotype switching, somatic hypermutation and affinity maturation. It is becoming increasingly apparent that while the adaptive immune response in these vertebrate lineages arose a long time ago, it is most definitely not primitive and has evolved to become complex and sophisticated. This review will summarise what is currently known about the immunoglobulins of cold-blooded vertebrates and highlight the differences, and commonalities, between these and more “conventional” mammalian species.
General and Comparative Endocrinology | 2015
Jun Zou; Anthony K. Redmond; Zhitao Qi; Helen Dooley; Christopher J. Secombes
This article will review current knowledge on CXCR in fish, that represent three distinct vertebrate groups: Agnatha (jawless fishes), Chondrichthyes (cartilaginous fishes) and Osteichthyes (bony fishes). With the sequencing of many fish genomes, information on CXCR in these species in particular has expanded considerably. In mammals, 6 CXCRs have been described, and their homologues will be initially reviewed before considering a number of atypical CXCRs and a discussion of CXCR evolution.
Molecular Immunology | 2010
Helen Dooley; E. Bryan Buckingham; Michael F. Criscitiello; Martin F. Flajnik
When released from damaged erythrocytes free heme not only provides a source of iron for invading bacteria but also highly toxic due to its ability to catalyze free radical formation. Hemopexin (Hx) binds free heme with very high-affinity and thus protects against heme toxicity, sequesters heme from pathogens, and helps conserve valuable iron. Hx is also an acute-phase serum protein (APP), whose expression is induced by inflammation. To date Hx has been identified as far back in phylogeny as bony fish where it is called warm-temperature acclimation-related 65 kDa protein (WAP65), as serum protein levels are increased at elevated environmental temperatures as well as by infection. During analysis of nurse shark (Ginglymostoma cirratum) plasma we isolated a Ni(2+)-binding serum glycoprotein and characterized it as the APP Hx. We subsequently cloned Hx from nurse shark and another cartilaginous fish species, the little skate Leucoraja erinacea. Functional analysis showed shark Hx, like that of mammals, binds heme but is found at unusually high levels in normal shark serum. As an Hx orthologue could not be found in the genomes of jawless vertebrates or lower deuterostomes it appears to have arisen just prior to the emergence of jawed vertebrates, coincident with the second round of genome-wide duplication and the appearance of tetrameric hemoglobin (Hb).
Methods of Molecular Biology | 2009
Martin F. Flajnik; Helen Dooley
The cartilaginous fish (sharks, skates, and rays) are the oldest phylogenetic group in which a human-type adaptive immune system and immunoglobulins (Igs) have been found. In addition to their conventional (heavy-light chain heterodimeric) isotypes, IgM and IgW, sharks produce the novel isotype, IgNAR, a heavy chain homodimer that does not associate with light chains. Instead, its variable (V) regions act as independent, soluble units in order to bind antigen. In this chapter, we detail our immunization protocol in order to raise a humoral IgNAR response in the nurse shark (Ginglymostoma cirratum) and the subsequent cloning of the single-domain V regions from this isotype in order to select antigen-specific binders by phage display.
European Journal of Immunology | 2013
Caitlin D. Castro; Yuko Ohta; Helen Dooley; Martin F. Flajnik
B‐lymphocyte‐induced maturation protein 1 (Blimp‐1) is the master regulator of plasma cell development, controlling genes such as those encoding J‐chain and secretory Ig heavy chain. However, some mammalian plasma cells do not express J‐chain, and mammalian B1 cells secrete “natural” IgM antibodies without upregulating Blimp‐1. While these results have been controversial in mammalian systems, here we describe subsets of normally occurring Blimp‐1− antibody‐secreting cells in nurse sharks, found in lymphoid tissues at all ontogenic stages. Sharks naturally produce large amounts of both pentameric (classically “19S”) and monomeric (classically “7S”) IgM, the latter an indicator of adaptive immunity. Consistent with the mammalian paradigm, shark Blimp‐1 is expressed in splenic 7S IgM‐secreting cells, though rarely detected in the J‐chain+ cells producing 19S IgM. Although IgM transcript levels are lower in J‐chain+ cells, these cells nevertheless secrete 19S IgM in the absence of Blimp‐1, as demonstrated by ELISPOT and metabolic labeling. Additionally, cells in the shark BM equivalent (epigonal) are Blimp‐1−. Our data suggest that, in sharks, 19S‐secreting cells and other secreting memory B cells in the epigonal are maintained for long periods without Blimp‐1, but like in mammals, Blimp‐1 is required for terminating the B‐cell program following an adaptive immune response in the spleen.
Fish & Shellfish Immunology | 2013
Ronggai Li; Tiehui Wang; Steve Bird; Jun Zou; Helen Dooley; Christopher J. Secombes
CD79α (also known as Igα) is a component of the B cell antigen receptor complex and plays an important role in B cell signalling. The CD79α protein is present on the surface of B cells throughout their life cycle, and is absent on all other healthy cells, making it a highly reliable marker for B cells in mammals. In this study the spiny dogfish (Squalus acanthias) CD79α (SaCD79α) is described and its expression studied under constitutive and stimulated conditions. The spiny dogfish CD79α cDNA contains an open reading frame of 618 bp, encoding a protein of 205 amino acids. Comparison of the SaCD79α gene with that of other species shows that the gross structure (number of exons, exon/intron boundaries, etc.) is highly conserved across phylogeny. Additionally, analysis of the 5′ flanking region shows SaCD79α lacks a TATA box and possesses binding sites for multiple transcription factors implicated in its B cell-specific gene transcription in other species. Spiny dogfish CD79α is most highly expressed in immune tissues, such as spleen, epigonal and Leydig organ, and its transcript level significantly correlates with those of spiny dogfish immunoglobulin heavy chains. Additionally, CD79α transcription is up-regulated, to a small but significant degree, in peripheral blood cells following stimulation with pokeweed mitogen. These results strongly indicate that, as in mammals, spiny dogfish CD79α is expressed by shark B cells where it associates with surface-bound immunoglobulin to form a fully functional BCR, and thus may serve as a pan-B cell marker in future shark immunological studies.