Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Helen M. Byrne is active.

Publication


Featured researches published by Helen M. Byrne.


Journal of Theoretical Biology | 2003

A cellular automaton model for tumour growth in inhomogeneous environment

Tomás Alarcón; Helen M. Byrne; Philip K. Maini

Most of the existing mathematical models for tumour growth and tumour-induced angiogenesis neglect blood flow. This is an important factor on which both nutrient and metabolite supply depend. In this paper we aim to address this shortcoming by developing a mathematical model which shows how blood flow and red blood cell heterogeneity influence the growth of systems of normal and cancerous cells. The model is developed in two stages. First we determine the distribution of oxygen in a native vascular network, incorporating into our model features of blood flow and vascular dynamics such as structural adaptation, complex rheology and red blood cell circulation. Once we have calculated the oxygen distribution, we then study the dynamics of a colony of normal and cancerous cells, placed in such a heterogeneous environment. During this second stage, we assume that the vascular network does not evolve and is independent of the dynamics of the surrounding tissue. The cells are considered as elements of a cellular automaton, whose evolution rules are inspired by the different behaviour of normal and cancer cells. Our aim is to show that blood flow and red blood cell heterogeneity play major roles in the development of such colonies, even when the red blood cells are flowing through the vasculature of normal, healthy tissue.


Nature Reviews Cancer | 2010

Dissecting cancer through mathematics: from the cell to the animal model

Helen M. Byrne

This Timeline article charts progress in mathematical modelling of cancer over the past 50 years, highlighting the different theoretical approaches that have been used to dissect the disease and the insights that have arisen. Although most of this research was conducted with little involvement from experimentalists or clinicians, there are signs that the tide is turning and that increasing numbers of those involved in cancer research and mathematical modellers are recognizing that by working together they might more rapidly advance our understanding of cancer and improve its treatment.


Nature Communications | 2015

Reinforcement of hydrogels using three-dimensionally printed microfibres

Jetze Visser; Ferry P.W. Melchels; June E. Jeon; Erik M. van Bussel; Laura S. Kimpton; Helen M. Byrne; Wouter J.A. Dhert; Paul D. Dalton; Dietmar W. Hutmacher; Jos Malda

Despite intensive research, hydrogels currently available for tissue repair in the musculoskeletal system are unable to meet the mechanical, as well as the biological, requirements for successful outcomes. Here we reinforce soft hydrogels with highly organized, high-porosity microfibre networks that are 3D-printed with a technique termed as melt electrospinning writing. We show that the stiffness of the gel/scaffold composites increases synergistically (up to 54-fold), compared with hydrogels or microfibre scaffolds alone. Modelling affirms that reinforcement with defined microscale structures is applicable to numerous hydrogels. The stiffness and elasticity of the composites approach that of articular cartilage tissue. Human chondrocytes embedded in the composites are viable, retain their round morphology and are responsive to an in vitro physiological loading regime in terms of gene expression and matrix production. The current approach of reinforcing hydrogels with 3D-printed microfibres offers a fundament for producing tissue constructs with biological and mechanical compatibility.


Journal of Mathematical Biology | 2009

Individual-based and continuum models of growing cell populations: a comparison

Helen M. Byrne; Dirk Drasdo

In this paper we compare two alternative theoretical approaches for simulating the growth of cell aggregates in vitro: individual cell (agent)-based models and continuum models. We show by a quantitative analysis of both a biophysical agent-based and a continuum mechanical model that for densely packed aggregates the expansion of the cell population is dominated by cell proliferation controlled by mechanical stress. The biophysical agent-based model introduced earlier (Drasdo and Hoehme in Phys Biol 2:133–147, 2005) approximates each cell as an isotropic, homogeneous, elastic, spherical object parameterised by measurable biophysical and cell-biological quantities and has been shown by comparison to experimental findings to explain the growth patterns of dense monolayers and multicellular spheroids. Both models exhibit the same growth kinetics, with initial exponential growth of the population size and aggregate diameter followed by linear growth of the diameter and power-law growth of the cell population size. Very sparse monolayers can be explained by a very small or absent cell–cell adhesion and large random cell migration. In this case the expansion speed is not controlled by mechanical stress but by random cell migration and can be modelled by the Fisher–Kolmogorov–Petrovskii–Piskounov (FKPP) reaction–diffusion equation. The growth kinetics differs from that of densely packed aggregates in that the initial spread, as quantified by the radius of gyration, is diffusive. Since simulations of the lattice-free agent-based model in the case of very large random migration are too long to be practical, lattice-based cellular automaton (CA) models have to be used for a quantitative analysis of sparse monolayers. Analysis of these dense monolayers leads to the identification of a critical parameter of the CA model so that eventually a hierarchy of three model types (a detailed biophysical lattice-free model, a rule-based cellular automaton and a continuum approach) emerge which yield the same growth pattern for dense and sparse cell aggregates.


Philosophical Transactions of the Royal Society A | 2006

Modelling aspects of cancer dynamics : a review

Helen M. Byrne; Tomás Alarcón; Markus R. Owen; Steven D. Webb; Philip K. Maini

Cancer is a complex disease in which a variety of factors interact over a wide range of spatial and temporal scales with huge datasets relating to the different scales available. However, these data do not always reveal the mechanisms underpinning the observed phenomena. In this paper, we explain why mathematics is a powerful tool for interpreting such data by presenting case studies that illustrate the types of insight that realistic theoretical models of solid tumour growth may yield. These range from discriminating between competing hypotheses for the formation of collagenous capsules associated with benign tumours to predicting the most likely stimulus for protease production in early breast cancer. We will also illustrate the benefits that may result when experimentalists and theoreticians collaborate by considering a novel anti-cancer therapy.


Multiscale Modeling & Simulation | 2005

A Multiple Scale Model for Tumor Growth

Tomás Alarcón; Helen M. Byrne; Philip K. Maini

We present a physiologically structured lattice model for vascular tumor growth which accounts for blood flow and structural adaptation of the vasculature, transport of oxygen, interaction between cancerous and normal tissue, cell division, apoptosis, vascular endothelial growth factor release, and the coupling between these processes. Simulations of the model are used to investigate the effects of nutrient heterogeneity, growth and invasion of cancerous tissue, and emergent growth laws.


Journal of Mathematical Biology | 2009

Angiogenesis and vascular remodelling in normal and cancerous tissues

Markus R. Owen; Tomás Alarcón; Philip K. Maini; Helen M. Byrne

Vascular development and homeostasis are underpinned by two fundamental features: the generation of new vessels to meet the metabolic demands of under-perfused regions and the elimination of vessels that do not sustain flow. In this paper we develop the first multiscale model of vascular tissue growth that combines blood flow, angiogenesis, vascular remodelling and the subcellular and tissue scale dynamics of multiple cell populations. Simulations show that vessel pruning, due to low wall shear stress, is highly sensitive to the pressure drop across a vascular network, the degree of pruning increasing as the pressure drop increases. In the model, low tissue oxygen levels alter the internal dynamics of normal cells, causing them to release vascular endothelial growth factor (VEGF), which stimulates angiogenic sprouting. Consequently, the level of blood oxygenation regulates the extent of angiogenesis, with higher oxygenation leading to fewer vessels. Simulations show that network remodelling (and de novo network formation) is best achieved via an appropriate balance between pruning and angiogenesis. An important factor is the strength of endothelial tip cell chemotaxis in response to VEGF. When a cluster of tumour cells is introduced into normal tissue, as the tumour grows hypoxic regions form, producing high levels of VEGF that stimulate angiogenesis and cause the vascular density to exceed that for normal tissue. If the original vessel network is sufficiently sparse then the tumour may remain localised near its parent vessel until new vessels bridge the gap to an adjacent vessel. This can lead to metastable periods, during which the tumour burden is approximately constant, followed by periods of rapid growth.


Bellman Prize in Mathematical Biosciences | 2000

A mathematical model to study the effects of drug resistance and vasculature on the response of solid tumors to chemotherapy

Trachette L. Jackson; Helen M. Byrne

A mathematical model is developed that describes the reduction in volume of a vascular tumor in response to specific chemotherapeutic administration strategies. The model consists of a system of partial differential equations governing intratumoral drug concentration and cancer cell density. In the model the tumor is treated as a continuum of two types of cells which differ in their proliferation rates and their responses to the chemotherapeutic agent. The balance between cell proliferation and death within the tumor generates a velocity field which drives expansion or regression of the spheroid. Insight into the tumors response to therapy is gained by applying a combination of analytical and numerical techniques to the model equations.


Cell Proliferation | 2009

An integrative computational model for intestinal tissue renewal.

I.M.M. van Leeuwen; Gary R. Mirams; Alex Walter; Alexander G. Fletcher; Philip J. Murray; James M. Osborne; S. Varma; S. J. Young; Jonathan Cooper; B. Doyle; Joe Pitt-Francis; Lee Momtahan; Pras Pathmanathan; Jonathan P. Whiteley; S. J. Chapman; David J. Gavaghan; Oliver E. Jensen; John R. King; Philip K. Maini; Sarah L. Waters; Helen M. Byrne

Objectives:  The luminal surface of the gut is lined with a monolayer of epithelial cells that acts as a nutrient absorptive engine and protective barrier. To maintain its integrity and functionality, the epithelium is renewed every few days. Theoretical models are powerful tools that can be used to test hypotheses concerning the regulation of this renewal process, to investigate how its dysfunction can lead to loss of homeostasis and neoplasia, and to identify potential therapeutic interventions. Here we propose a new multiscale model for crypt dynamics that links phenomena occurring at the subcellular, cellular and tissue levels of organisation.


Bulletin of Mathematical Biology | 2003

A Multiphase Model Describing Vascular Tumour Growth

C. J. W. Breward; Helen M. Byrne; Claire E. Lewis

In this paper we present a new model framework for studying vascular tumour growth, in which the blood vessel density is explicitly considered. Our continuum model comprises conservation of mass and momentum equations for the volume fractions of tumour cells, extracellular material and blood vessels. We include the physical mechanisms that we believe to be dominant, namely birth and death of tumour cells, supply and removal of extracellular fluid via the blood and lymph drainage vessels, angiogenesis and blood vessel occlusion. We suppose that the tumour cells move in order to relieve the increase in mechanical stress caused by their proliferation. We show how to reduce the model to a system of coupled partial differential equations for the volume fraction of tumour cells and blood vessels and the phase averaged velocity of the mixture. We consider possible parameter regimes of the resulting model. We solve the equations numerically in these cases, and discuss the resulting behaviour. The model is able to reproduce tumour structure that is found in vivo in certain cases. Our framework can be easily modified to incorporate the effect of other phases, or to include the effect of drugs.

Collaboration


Dive into the Helen M. Byrne's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomás Alarcón

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Markus R. Owen

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

John R. King

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniele Muraro

University of Nottingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge