Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Helen Macintyre is active.

Publication


Featured researches published by Helen Macintyre.


Environmental Health | 2016

Health and climate related ecosystem services provided by street trees in the urban environment

Jennifer Salmond; Marc Tadaki; Sotiris Vardoulakis; Katherine Arbuthnott; Andrew M. Coutts; Matthias Demuzere; Kim N. Dirks; Clare Heaviside; Shanon Lim; Helen Macintyre; Rachel N. McInnes; Benedict W. Wheeler

Urban tree planting initiatives are being actively promoted as a planning tool to enable urban areas to adapt to and mitigate against climate change, enhance urban sustainability and improve human health and well-being. However, opportunities for creating new areas of green space within cities are often limited and tree planting initiatives may be constrained to kerbside locations. At this scale, the net impact of trees on human health and the local environment is less clear, and generalised approaches for evaluating their impact are not well developed.In this review, we use an urban ecosystems services framework to evaluate the direct, and locally-generated, ecosystems services and disservices provided by street trees. We focus our review on the services of major importance to human health and well-being which include ‘climate regulation’, ‘air quality regulation’ and ‘aesthetics and cultural services’. These are themes that are commonly used to justify new street tree or street tree retention initiatives. We argue that current scientific understanding of the impact of street trees on human health and the urban environment has been limited by predominantly regional-scale reductionist approaches which consider vegetation generally and/or single out individual services or impacts without considering the wider synergistic impacts of street trees on urban ecosystems. This can lead planners and policymakers towards decision making based on single parameter optimisation strategies which may be problematic when a single intervention offers different outcomes and has multiple effects and potential trade-offs in different places.We suggest that a holistic approach is required to evaluate the services and disservices provided by street trees at different scales. We provide information to guide decision makers and planners in their attempts to evaluate the value of vegetation in their local setting. We show that by ensuring that the specific aim of the intervention, the scale of the desired biophysical effect and an awareness of a range of impacts guide the choice of i) tree species, ii) location and iii) density of tree placement, street trees can be an important tool for urban planners and designers in developing resilient and resourceful cities in an era of climatic change.


Current Environmental Health Reports | 2017

The Urban Heat Island: Implications for Health in a Changing Environment

Clare Heaviside; Helen Macintyre; Sotiris Vardoulakis

Purpose of ReviewThe Urban Heat Island (UHI) is a well-studied phenomenon, whereby urban areas are generally warmer than surrounding suburban and rural areas. The most direct effect on health from the UHI is due to heat risk, which is exacerbated in urban areas, particularly during heat waves. However, there may be health benefits from warming during colder months. This review highlights recent attempts to quantitatively estimate the health impacts of the UHI and estimations of the health benefits of UHI mitigation measures.Recent FindingsClimate change, increasing urbanisation and an ageing population in much of the world, is likely to increase the risks to health from the UHI, particularly from heat exposure. Studies have shown increased health risks in urban populations compared with rural or suburban populations in hot weather and a disproportionate impact on more vulnerable social groups. Estimations of the impacts of various mitigation techniques suggest that a range of measures could reduce health impacts from heat and bring other benefits to health and wellbeing.SummaryThe impact of the UHI on heat-related health is significant, although often overlooked, particularly when considering future impacts associated with climate change. Multiple factors should be considered when designing mitigation measures in urban environments in order to maximise health benefits and avoid unintended negative effects.


Journal of Building Performance Simulation | 2016

Development of an England-wide indoor overheating and air pollution model using artificial neural networks

Phil Symonds; Jonathon Taylor; Zaid Chalabi; Anna Mavrogianni; Michael Davies; Ian Hamilton; Sotiris Vardoulakis; Clare Heaviside; Helen Macintyre

With the UK climate projected to warm in future decades, there is an increased research focus on the risks of indoor overheating. Energy-efficient building adaptations may modify a buildings risk of overheating and the infiltration of air pollution from outdoor sources. This paper presents the development of a national model of indoor overheating and air pollution, capable of modelling the existing and future building stocks, along with changes to the climate, outdoor air pollution levels, and occupant behaviour. The model presented is based on a large number of EnergyPlus simulations run in parallel. A metamodelling approach is used to create a model that estimates the indoor overheating and air pollution risks for the English housing stock. The performance of neural networks (NNs) is compared to a support vector regression (SVR) algorithm when forming the metamodel. NNs are shown to give almost a 50% better overall performance than SVR.


Science of The Total Environment | 2018

Assessing urban population vulnerability and environmental risks across an urban area during heatwaves – Implications for health protection

Helen Macintyre; Clare Heaviside; Jonathon Taylor; Roberto Picetti; Phil Symonds; Xiaoming Cai; Sotiris Vardoulakis

Heatwaves can lead to a range of adverse impacts including increased risk of illness and mortality; the heatwave in August 2003 has been associated with ~70,000 deaths across Europe. Due to climate change, heatwaves are likely to become more intense, more frequent and last longer in the future. A number of factors may influence risks associated with heat exposure, such as population age, housing type, and location within the Urban Heat Island, and such factors may not be evenly distributed spatially across a region. We simulated and analysed two major heatwaves in the UK, in August 2003 and July 2006, to assess spatial vulnerability to heat exposure across the West Midlands, an area containing ~5 million people, and how ambient temperature varies in relation to factors that influence heat-related health effects, through weighting of ambient temperatures according to distributions of these factors across an urban area. Additionally we present quantification of how particular centres such as hospitals are exposed to the UHI, by comparing temperatures at these locations with average temperatures across the region, and presenting these results for both day and night times. We find that UHI intensity was substantial during both heatwaves, reaching a maximum of +9.6°C in Birmingham in July 2006. Previous work has shown some housing types, such as flats and terraced houses, are associated with increased risk of overheating, and our results show that these housing types are generally located within the warmest parts of the city. Older age groups are more susceptible to the effects of heat. Our analysis of distribution of population based on age group showed there is only small spatial variation in ambient temperature that different age groups are exposed to. Analysis of relative deprivation across the region indicates more deprived populations are located in the warmest parts of the city.


Environment International | 2016

Mortality and emergency hospitalizations associated with atmospheric particulate matter episodes across the UK in spring 2014.

Helen Macintyre; Clare Heaviside; Lucy Neal; Paul Agnew; John Thornes; Sotiris Vardoulakis

Exposure to particulate air pollution is known to have negative impacts on human health. Long-term exposure to anthropogenic particulate matter is associated with the equivalent of around 29,000 deaths a year in the UK. However, short-lived air pollution episodes on the order of a few days are also associated with increased daily mortality and emergency hospital admissions for respiratory and cardiovascular conditions. The UK experienced widespread high levels of particulate air pollution in March-April 2014; observations of hourly mean PM2.5 concentrations reached up to 83μgm-3 at urban background sites. We performed an exposure and health impact assessment of the spring air pollution, focusing on two episodes with the highest concentrations of PM2.5 (12-14 March and 28 March-3 April 2014). Across these two episodes of elevated air pollution, totalling 10days, around 600 deaths were brought forward from short-term exposure to PM2.5, representing 3.9% of total all-cause (excluding external) mortality during these days. Using observed levels of PM2.5 from other years, we estimate that this is 2.0 to 2.7 times the mortality burden associated with typical urban background levels of PM2.5 at this time of year. Our results highlight the potential public health impacts and may aid planning for health care resources when such an episode is forecast.


Environment International | 2017

Comparison of built environment adaptations to heat exposure and mortality during hot weather, West Midlands region, UK

Jonathon Taylor; Paul Wilkinson; Roberto Picetti; Phil Symonds; Clare Heaviside; Helen Macintyre; Michael J. Davies; Anna Mavrogianni; Emma J. Hutchinson

There is growing recognition of the need to improve protection against the adverse health effects of hot weather in the context of climate change. We quantify the impact of the Urban Heat Island (UHI) and selected adaptation measures made to dwellings on temperature exposure and mortality in the West Midlands region of the UK. We used 1) building physics models to assess indoor temperatures, initially in the existing housing stock and then following adaptation measures (energy efficiency building fabric upgrades and/or window shutters), of representative dwelling archetypes using data from the English Housing Survey (EHS), and 2) modelled UHI effect on outdoor temperatures. The ages of residents were combined with evidence on the heat-mortality relationship to estimate mortality risk and to quantify population-level changes in risk following adaptations to reduce summertime heat exposure. Results indicate that the UHI effect accounts for an estimated 21% of mortality. External shutters may reduce heat-related mortality by 30-60% depending on weather conditions, while shutters in conjunction with energy-efficient retrofitting may reduce risk by up to 52%. The use of shutters appears to be one of the most effective measures providing protection against heat-related mortality during periods of high summer temperatures, although their effectiveness may be limited under extreme temperatures. Energy efficiency adaptations to the dwellings and measures to increase green space in the urban environment to combat the UHI effect appear to be less beneficial for reducing heat-related mortality.


Atmospheric Chemistry and Physics | 2010

Sensitivity of a global model to the uptake of N 2 O 5 by tropospheric aerosol

Helen Macintyre; M. J. Evans


Atmospheric Chemistry and Physics | 2011

Parameterisation and impact of aerosol uptake of HO 2 on a global tropospheric model

Helen Macintyre; M. J. Evans


Atmospheric Chemistry and Physics | 2017

The influence of model spatial resolution on simulated ozone and fine particulate matter for Europe: implications for health impact assessments

Sara Fenech; Ruth M. Doherty; Clare Heaviside; Sotiris Vardoulakis; Helen Macintyre; F. M. O'Connor


Atmospheric Chemistry and Physics | 2016

Evaluating model parameterizations of submicron aerosol scattering and absorption with in situ data from ARCTAS 2008

Matthew J. Alvarado; Chantelle R. Lonsdale; Helen Macintyre; Huisheng Bian; Mian Chin; David A. Ridley; Colette L. Heald; K. L. Thornhill; Bruce E. Anderson; Michael J. Cubison; Jose L. Jimenez; Yutaka Kondo; L. K. Sahu; Jack E. Dibb; Chien Wang

Collaboration


Dive into the Helen Macintyre's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathon Taylor

University College London

View shared research outputs
Top Co-Authors

Avatar

Phil Symonds

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge