Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Helen Mulvana is active.

Publication


Featured researches published by Helen Mulvana.


Interface Focus | 2011

Quantitative contrast-enhanced ultrasound imaging: a review of sources of variability

Meng-Xing Tang; Helen Mulvana; T. Gauthier; Adrian Lim; David Cosgrove; Robert J. Eckersley; Eleanor Stride

Ultrasound provides a valuable tool for medical diagnosis offering real-time imaging with excellent spatial resolution and low cost. The advent of microbubble contrast agents has provided the additional ability to obtain essential quantitative information relating to tissue vascularity, tissue perfusion and even endothelial wall function. This technique has shown great promise for diagnosis and monitoring in a wide range of clinical conditions such as cardiovascular diseases and cancer, with considerable potential benefits in terms of patient care. A key challenge of this technique, however, is the existence of significant variations in the imaging results, and the lack of understanding regarding their origin. The aim of this paper is to review the potential sources of variability in the quantification of tissue perfusion based on microbubble contrast-enhanced ultrasound images. These are divided into the following three categories: (i) factors relating to the scanner setting, which include transmission power, transmission focal depth, dynamic range, signal gain and transmission frequency, (ii) factors relating to the patient, which include body physical differences, physiological interaction of body with bubbles, propagation and attenuation through tissue, and tissue motion, and (iii) factors relating to the microbubbles, which include the type of bubbles and their stability, preparation and injection and dosage. It has been shown that the factors in all the three categories can significantly affect the imaging results and contribute to the variations observed. How these factors influence quantitative imaging is explained and possible methods for reducing such variations are discussed.


Ultrasound in Medicine and Biology | 2010

Temperature dependent behavior of ultrasound contrast agents.

Helen Mulvana; Eleanor Stride; Jo Hajnal; Robert J. Eckersley

Recent interest in ultrasound contrast agents (UCAs) as tools for quantitative imaging and therapy has increased the need for accurate characterization. Laboratory investigations are frequently undertaken in a water bath at room temperature; however, implications for in vivo applications are not presented. Acoustic investigation of a bulk suspension of SonoVue (Bracco Research, Geneva, Switzerland) was made in a water bath at temperatures of 20-45 degrees C. UCA characteristics were significantly affected by temperature, particularly between 20 and 40 degrees C, leading to an increase in attenuation from 1.7-2.5 dB, respectively (p = 0.002) and a 2-dB increase in scattered signal over the same range (p = 0.05) at an insonation pressure of 100 kPa. Optical data supported the hypothesis that a temperature-mediated increase in diameter was the dominant cause, and revealed a decrease in bubble stability. In conclusion, measurements made at room temperature require careful interpretation with regard to behavior in vivo.


Advanced Drug Delivery Reviews | 2013

Ultrasound assisted particle and cell manipulation on-chip ☆

Helen Mulvana; S. Cochran; Martyn Hill

Ultrasonic fields are able to exert forces on cells and other micron-scale particles, including microbubbles. The technology is compatible with existing lab-on-chip techniques and is complementary to many alternative manipulation approaches due to its ability to handle many cells simultaneously over extended length scales. This paper provides an overview of the physical principles underlying ultrasonic manipulation, discusses the biological effects relevant to its use with cells, and describes emerging applications that are of interest in the field of drug development and delivery on-chip.


Journal of the American Chemical Society | 2015

Gelation Landscape Engineering Using a Multi-Reaction Supramolecular Hydrogelator System

Jamie S. Foster; Justyna M. Żurek; Nuno Miguel da Silva Almeida; Wouter E. Hendriksen; Vincent A. A. le Sage; Vasudevan Lakshminarayanan; Amber L. Thompson; Rahul Banerjee; Rienk Eelkema; Helen Mulvana; Martin J. Paterson; Jan H. van Esch; Gareth O. Lloyd

Simultaneous control of the kinetics and thermodynamics of two different types of covalent chemistry allows pathway selectivity in the formation of hydrogelating molecules from a complex reaction network. This can lead to a range of hydrogel materials with vastly different properties, starting from a set of simple starting compounds and reaction conditions. Chemical reaction between a trialdehyde and the tuberculosis drug isoniazid can form one, two, or three hydrazone connectivity products, meaning kinetic gelation pathways can be addressed. Simultaneously, thermodynamics control the formation of either a keto or an enol tautomer of the products, again resulting in vastly different materials. Overall, this shows that careful navigation of a reaction landscape using both kinetic and thermodynamic selectivity can be used to control material selection from a complex reaction network.


Ultrasound in Medicine and Biology | 2011

Influence of needle gauge on in vivo ultrasound and microbubble-mediated gene transfection

Richard J. Browning; Helen Mulvana; Meng-Xing Tang; Jo Hajnal; Dominic J. Wells; Robert J. Eckersley

Ultrasound and microbubble-mediated gene transfection are potential tools for safe, site-selective gene therapy. However, preclinical trials have demonstrated a low transfection efficiency that has hindered the progression of the technique to clinical application. In this paper it is shown that simple changes to the method of intravenous injection can lead to an increase in transfection efficiency when using 6-MHz diagnostic ultrasound and the ultrasound contrast agent, SonoVue. By using needles of progressively smaller gauge, i.e., larger internal diameter (ID), from 29 G (ID 0.184 mm) to 25 G (ID 0.31 mm), the transfection of a luciferase plasmid (pGL4.13) was significantly increased threefold in heart-targeted female CD1 mice. In vitro work indicated that the concentration and size distribution of SonoVue were affected by increasing needle gauge. These results suggest that the process of systemic delivery alters the bubble population and adversely affects transfection. This is exacerbated by using high-gauge needles. These findings demonstrate that the needle with the largest possible ID should be used for systemic delivery of microbubbles and genetic material.


Ultrasound in Medicine and Biology | 2012

Theoretical and experimental characterisation of magnetic microbubbles.

Helen Mulvana; Robert J. Eckersley; Meng-Xing Tang; Quentin A. Pankhurst; Eleanor Stride

In addition to improving image contrast, microbubbles have shown great potential in molecular imaging and drug/gene delivery. Previous work by the authors showed that considerable improvements in gene transfection efficiency were obtained using microbubbles loaded with magnetic nanoparticles under simultaneous exposure to ultrasound and magnetic fields. The aim of this study was to characterise the effect of nanoparticles on the dynamic and acoustic response of the microbubbles. High-speed video microscopy indicated that the amplitude of oscillation was very similar for magnetic and nonmagnetic microbubbles of the same size for the same ultrasound exposure (0.5 MHz, 100 kPa, 12-cycle pulse) and that this was minimally affected by an imposed magnetic field. The linear scattering to attenuation ratio (STAR) was also similar for suspensions of both bubble types although the nonlinear STAR was ~50% lower for the magnetic microbubbles. Both the video and acoustic data were supported by the results from theoretical modelling.


Ultrasound in Medicine and Biology | 2012

Effect of albumin and dextrose concentration on ultrasound and microbubble mediated gene transfection in vivo

Richard J. Browning; Helen Mulvana; Meng-Xing Tang; Jo Hajnal; Dominic J. Wells; Robert J. Eckersley

Ultrasound and microbubble mediated gene transfection has great potential for site-selective, safe gene delivery. Albumin-based microbubbles have shown the greatest transfection efficiency but have not been optimised specifically for this purpose. Additionally, few studies have highlighted desirable properties for transfection specific microbubbles. In this article, microbubbles were made with 2% or 5% (w/v) albumin and 20% or 40% (w/v) dextrose solutions, yielding four distinct bubble types. These were acoustically characterised and their efficiency in transfecting a luciferase plasmid (pGL4.13) into female, CD1 mice myocardia was measured. For either albumin concentration, increasing the dextrose concentration increased scattering, attenuation and resistance to ultrasound, resulting in significantly increased transfection. A significant interaction was noted between albumin and dextrose; 2% albumin bubbles made with 20% dextrose showed the least transfection but the most transfection with 40% dextrose. This trend was seen for both nonlinear scattering and attenuation behaviour but not for resistance to ultrasound or total scatter. We have determined that the attenuation behaviour is an important microbubble characteristic for effective gene transfection using ultrasound. Microbubble behaviour can also be simply controlled by altering the initial ingredients used during manufacture.


Ultrasound in Medicine and Biology | 2011

Temperature-dependent differences in the nonlinear acoustic behavior of ultrasound contrast agents revealed by high-speed imaging and bulk acoustics

Helen Mulvana; Eleanor Stride; Meng-Xing Tang; Jo Hajnal; Robert J. Eckersley

Previous work by the authors has established that increasing the temperature of the suspending liquid from 20°C to body temperature has a significant impact on the bulk acoustic properties and stability of an ultrasound contrast agent suspension (SonoVue, Bracco Suisse SA, Manno, Lugano, Switzerland). In this paper the influence of temperature on the nonlinear behavior of microbubbles is investigated, because this is one of the most important parameters in the context of diagnostic imaging. High-speed imaging showed that raising the temperature significantly influences the dynamic behavior of individual microbubbles. At body temperature, microbubbles exhibit greater radial excursion and oscillate less spherically, with a greater incidence of jetting and gas expulsion, and therefore collapse, than they do at room temperature. Bulk acoustics revealed an associated increase in the harmonic content of the scattered signals. These findings emphasize the importance of conducting laboratory studies at body temperature if the results are to be interpreted for in vivo applications.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2017

Characterization of Contrast Agent Microbubbles for Ultrasound Imaging and Therapy Research

Helen Mulvana; Richard J. Browning; Ying Luan; Nico de Jong; Meng-Xing Tang; Robert J. Eckersley; Eleanor Stride

The high efficiency with which gas microbubbles can scatter ultrasound compared with the surrounding blood pool or tissues has led to their widespread employment as contrast agents in ultrasound imaging. In recent years, their applications have been extended to include super-resolution imaging and the stimulation of localized bio-effects for therapy. The growing exploitation of contrast agents in ultrasound and in particular these recent developments have amplified the need to characterize and fully understand microbubble behavior. The aim in doing so is to more fully exploit their utility for both diagnostic imaging and potential future therapeutic applications. This paper presents the key characteristics of microbubbles that determine their efficacy in diagnostic and therapeutic applications and the corresponding techniques for their measurement. In each case, we have presented information regarding the methods available and their respective strengths and limitations, with the aim of presenting information relevant to the selection of appropriate characterization methods. First, we examine methods for determining the physical properties of microbubble suspensions and then techniques for acoustic characterization of both suspensions and single microbubbles. The next section covers characterization of microbubbles as therapeutic agents, including as drug carriers for which detailed understanding of their surface characteristics and drug loading capacity is required. Finally, we discuss the attempts that have been made to allow comparison across the methods employed by various groups to characterize and describe their microbubble suspensions and promote wider discussion and comparison of microbubble behavior.


Ultrasound in Medicine and Biology | 2015

In Vitro Investigation of the Individual Contributions of Ultrasound-Induced Stable and Inertial Cavitation in Targeted Drug Delivery.

Dana Gourevich; Alexander Volovick; Osnat Dogadkin; Lijun Wang; Helen Mulvana; Yoav Medan; Andreas Melzer; S. Cochran

Ultrasound-mediated targeted drug delivery is a therapeutic modality under development with the potential to treat cancer. Its ability to produce local hyperthermia and cell poration through cavitation non-invasively makes it a candidate to trigger drug delivery. Hyperthermia offers greater potential for control, particularly with magnetic resonance imaging temperature measurement. However, cavitation may offer reduced treatment times, with real-time measurement of ultrasonic spectra indicating drug dose and treatment success. Here, a clinical magnetic resonance imaging-guided focused ultrasound surgery system was used to study ultrasound-mediated targeted drug delivery in vitro. Drug uptake into breast cancer cells in the vicinity of ultrasound contrast agent was correlated with occurrence and quantity of stable and inertial cavitation, classified according to subharmonic spectra. During stable cavitation, intracellular drug uptake increased by a factor up to 3.2 compared with the control. Reported here are the value of cavitation monitoring with a clinical system and its subsequent employment for dose optimization.

Collaboration


Dive into the Helen Mulvana's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jo Hajnal

King's College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge