Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Helen R. Sabolek is active.

Publication


Featured researches published by Helen R. Sabolek.


Journal of Clinical Neurophysiology | 2010

Interictal Spikes Precede Ictal Discharges in an Organotypic Hippocampal Slice Culture Model of Epileptogenesis.

J. Dyhrfjeld-Johnsen; Yevgeny Berdichevsky; Waldemar Swiercz; Helen R. Sabolek; Kevin J. Staley

Summary: In organotypic hippocampal slice cultures, principal neurons form aberrant excitatory connections with other principal cells in response to slicing induced deafferentation, similar to mechanisms underlying epileptogenesis in posttraumatic epilepsy. To investigate the consequences of this synaptogenesis, the authors recorded field-potential activity from area CA3 during perfusion with the complete growth medium used during incubation. At 7 days in vitro, slice cultures only displayed multiunit activity. At 14 days in vitro, the majority displayed population bursts reminiscent of interictal-like spikes, but sustained synchronous activity was rare. Band-pass filtering of interictal discharges revealed fast ripple-like complexes, similar to in vivo recordings. Spontaneous ictal-like activity became progressively more prevalent with age: at 21 days in vitro, 50% of organotypic hippocampal slice cultures displayed long-lasting, ictal-like discharges that could be suppressed by phenytoin, whereas interictal activity was not suppressed. The fraction of cultures displaying ictal events continually increased with incubation time. Quantification of population spike activity throughout epileptogenesis using automatic detection and clustering algorithms confirmed the appearance of interictal-like activity before ictal-like discharges and also revealed high-frequency pathologic multiunit activity in slice cultures at 14 to 17 days in vitro. These experiments indicate that interictal-like spikes precede the appearance of ictal-like activity in a reduced in vitro preparation. Epileptiform activity in cultures resembled in vivo epilepsy, including sensitivity to anticonvulsants and steadily increasing seizure incidence over time, although seizure frequency and rate of epileptogenesis were higher in vitro. Organotypic hippocampal slice cultures comprise a useful model system for investigating mechanisms of epileptogenesis as well as developing antiepileptic and antiepileptogenic drugs.


Journal of Neuroscience Methods | 2009

Microfluidics and multielectrode array-compatible organotypic slice culture method

Yevgeny Berdichevsky; Helen R. Sabolek; John B. Levine; Kevin J. Staley; Martin L. Yarmush

Organotypic brain slice cultures are used for a variety of molecular, electrophysiological, and imaging studies. However, the existing culture methods are difficult or expensive to apply in studies requiring long-term recordings with multielectrode arrays (MEAs). In this work, a novel method to maintain organotypic cultures of rodent hippocampus for several weeks on standard MEAs in an unmodified tissue culture incubator is described. Polydimethylsiloxane (Sylgard) mini-wells were used to stabilize organotypic cultures on glass and MEA surfaces. Hippocampus slices were successfully maintained within PDMS mini-wells for multiple weeks, with preserved pyramidal layer organization, connectivity, and activity. MEAs were used to record the development of spontaneous activity in an organotypic cultures for 4 weeks. This method is compatible with integration of microchannels into the culture substrate. Microchannels were incorporated into the mini-wells and applied to the guidance of axons originating within the slice, paving the way for studies of axonal sprouting using organotypic slices.


Journal of Neurophysiology | 2009

Theta and Gamma Coherence Along the Septotemporal Axis of the Hippocampus

Helen R. Sabolek; Stephanie C. Penley; James R. Hinman; Jamie G. Bunce; Etan J. Markus; Monty A. Escabí; James J. Chrobak

Theta and gamma rhythms synchronize neurons within and across brain structures. Both rhythms are widespread within the hippocampus during exploratory behavior and rapid-eye-movement (REM) sleep. How synchronous are these rhythms throughout the hippocampus? The present study examined theta and gamma coherence along the septotemporal (long) axis of the hippocampus in rats during REM sleep, a behavioral state during which theta signals are unaffected by external sensory input or ongoing behavior. Unilateral entorhinal cortical inputs are thought to play a prominent role in the current generation of theta, whereas current generation of gamma is primarily due to local GABAergic neurons. The septal 50% (4-5 mm) of the dentate gyrus (DG) receives a highly divergent, unilateral projection from any focal point along a lateral band of entorhinal neurons near the rhinal sulcus. We hypothesized that theta coherence in the target zone (septal DG) of this divergent entorhinal input would not vary, while gamma coherence would significantly decline with distance in this zone. However, both theta and gamma coherence decreased significantly along the long axis in the septal 50% of the hippocampus across both DG and CA1 electrode sites. In contrast, theta coherence between homotypic (e.g., DG to DG) sites in the contralateral hemisphere ( approximately 3-5 mm distant) were quite high ( approximately 0.7-0.9), much greater than theta coherence between homotypic sites 3-5 mm distant ( approximately 0.4-0.6) along the long axis. These findings define anatomic variation in both rhythms along the longitudinal axis of the hippocampus, indicate the bilateral CA3/mossy cell projections are the major determinant of theta coherence during REM, and demonstrate that theta coherence varies as a function of anatomical connectivity rather than physical distance. We suggest CA3 and entorhinal inputs interact dynamically to generate theta field potentials and advance the utility of theta and gamma coherence as indicators of hippocampal dynamics.


The Journal of Neuroscience | 2012

A Candidate Mechanism Underlying the Variance of Interictal Spike Propagation

Helen R. Sabolek; Waldemar Swiercz; Kyle P. Lillis; Sydney S. Cash; Gilles Huberfeld; Grace Q. Zhao; Linda Ste. Marie; Stéphane Clemenceau; Greg Barsh; Richard Miles; Kevin J. Staley

Synchronous activation of neural networks is an important physiological mechanism, and dysregulation of synchrony forms the basis of epilepsy. We analyzed the propagation of synchronous activity through chronically epileptic neural networks. Electrocorticographic recordings from epileptic patients demonstrate remarkable variance in the pathways of propagation between sequential interictal spikes (IISs). Calcium imaging in chronically epileptic slice cultures demonstrates that pathway variance depends on the presence of GABAergic inhibition and that spike propagation becomes stereotyped following GABA receptor blockade. Computer modeling suggests that GABAergic quenching of local network activations leaves behind regions of refractory neurons, whose late recruitment forms the anatomical basis of variability during subsequent network activation. Targeted path scanning of slice cultures confirmed local activations, while ex vivo recordings of human epileptic tissue confirmed the dependence of interspike variance on GABA-mediated inhibition. These data support the hypothesis that the paths by which synchronous activity spreads through an epileptic network change with each activation, based on the recent history of localized activity that has been successfully inhibited.


The Journal of Neuroscience | 2008

Revealing Past Memories: Proactive Interference and Ketamine-Induced Memory Deficits

James J. Chrobak; James R. Hinman; Helen R. Sabolek

Memories of events that occur often are sensitive to interference from memories of similar events. Proactive interference plays an important and often unexamined role in memory testing for spatially and temporally unique events (“episodes”). Ketamine (NMDA receptor antagonist) treatment in humans and other mammals induces a constellation of cognitive deficits, including impairments in working and episodic memory. We examined the effects of the ketamine (2.5–100 mg/kg) on the acquisition, retrieval, and retention of memory in a delayed-match-to-place radial water maze task that can be used to assess proactive interference. Ketamine (2.5–25 mg/kg, i.p.) given 20 min before the sample trial, impaired encoding. The first errors made during the test trial were predominantly to arms located spatially adjacent to the goal arm, suggesting an established albeit weakened representation. Ketamine (25–100 mg/kg) given immediately after the sample trial had no effect on retention. Ketamine given before the test trial impaired retrieval. First errors under the influence of ketamine were predominantly to the goal location of the previous session. Thus, ketamine treatment promoted proactive interference. These memory deficits were not state dependent, because ketamine treatment at both encoding and retrieval only increased the number of errors during the test session. These data demonstrate the competing influence of distinct memory representations during the performance of a memory task in the rat. Furthermore, they demonstrate the subtle disruptive effects of the NMDA antagonist ketamine on both encoding and retrieval. Specifically, ketamine treatment disrupted retrieval by promoting proactive interference from previous episodic representations.


Neuroscience | 2003

Intraseptal infusion of oxotremorine impairs memory in a delayed-non-match-to-sample radial maze task

Jamie G. Bunce; Helen R. Sabolek; James J. Chrobak

The medial septal nucleus is part of the forebrain circuitry that supports memory. This nucleus is rich in cholinergic receptors and is a putative target for the development of cholinomimetic cognitive-enhancing drugs. Septal neurons, primarily cholinergic and GABAergic, innervate the entire hippocampal formation and regulate hippocampal formation physiology and emergent function. Direct intraseptal drug infusions can produce amnestic or promnestic effects depending upon the type of drug administered. However, intraseptal infusion of the cholinomimetic oxotremorine has been reported to produce both promnestic and amnestic effects when administered prior to task performance. The present study examined whether post-acquisition intraseptal infusion of oxotremorine would be promnestic or amnestic in a delayed-non-match-to-sample radial maze task. In this task rats must remember information about spatial locations visited during a daily sample session and maintain that information over extended retention intervals (hours) in order to perform accurately on the daily test session. Treatments may then be administered during the retention interval. Alterations in maze performance during the test session an hour or more after treatment evidences effects on memory. In the present study, intraseptal infusion of oxotremorine (1.0-10.0 microg) produced a linear dose-related impairment of memory performance. Importantly, we also observed disrupted performance on the day after treatment. This persistent deficit was related only to memory over the retention interval and did not affect indices of short-term memory (ability to avoid repetitive or proactive errors during both the pre- and post-delay sessions). The persistent deficit contrasts with the acute amnestic effects of other intraseptally administered drugs including the cholinomimetics carbachol and tacrine. Thus, intraseptal oxotremorine produced a preferential disruption of memory consolidation as well as a persistent alteration of medial septal circuits. These findings are discussed with regards to multi-stage models of hippocampal-dependent memory formation and the further development of therapeutic strategies in the treatment of mild cognitive impairment as well as age-related decline and Alzheimers dementia.


Hippocampus | 2012

Theta and Gamma Coherence Across the Septotemporal Axis During Distinct Behavioral States

Stephanie C. Penley; James R. Hinman; Helen R. Sabolek; Monty A. Escabí; Etan J. Markus; James J. Chrobak

Theta (4–12 Hz) and gamma (40–100 Hz) field potentials represent the interaction of synchronized synaptic input onto distinct neuronal populations within the hippocampal formation. Theta is quite prominent during exploratory activity, locomotion, and REM sleep. Although it is generally acknowledged that theta is coherent throughout most of the hippocampus, there is significant variability in theta, as well as gamma, coherence across lamina at any particular septotemporal level of the hippocampus. Larger differences in theta coherence are observed across the septotemporal (long) axis. We have reported that during REM sleep there is a decrease in theta coherence across the long axis that varies with the topography of CA3/mossy cell input rather than the topography of the prominent entorhinal input. On the basis of differences in the rats behavior as well as the activity of neuromodulatory inputs (e.g., noradrenergic and serotonergic), we hypothesized that theta coherence across the long axis would be greater during locomotion than REM sleep and exhibit a pattern more consistent with the topography of entorhinal inputs. We examined theta and gamma coherence indices at different septotemporal and laminar sites during distinct theta states: locomotion during maze running, REM sleep, following acute treatment with a θ‐inducing cholinomimetic (physostigmine) and for comparison during slow‐wave sleep. The results demonstrate a generally consistent pattern of theta and gamma coherence across the septotemporal axis of the hippocampus that is quite indifferent to sensory input and overt behavior. These results are discussed with regards to the neurobiological mechanisms that generate theta and gamma and the growing body of evidence linking theta and gamma indices to memory and other cognitive functions.


Neuroscience | 2004

Timing of administration mediates the memory effects of intraseptal carbachol infusion

Jamie G. Bunce; Helen R. Sabolek; James J. Chrobak

Medial septal neurons innervate the entire hippocampal formation. This input provides a potent regulation of hippocampal formation physiology (e.g. theta) and memory function. Medial septal neurons are rich in cholinergic receptors and thus are potential targets for the development of cognitive enhancers. Direct intraseptal infusion of cholinomimetics alters hippocampal physiology and can produce either promnestic or amnestic effects. Several variables (e.g. age of animal, integrity of septohippocampal circuits, task difficulty) may influence treatment outcome. We have previously demonstrated that intraseptal carbachol (12.5-125 ng) infusion immediately after the sample session of a delayed-non-match-to-sample radial maze paradigm produces a dose-dependent amnesia. The present study examined whether manipulating the timing of intraseptal carbachol infusion with respect to the sample session would alter the amnestic effect. A within-subjects design was used to examine the effect of intraseptal carbachol (125 ng/0.5 microl) in a delayed-non-match to sample radial maze task. During a sample session, rats retrieved rewards from six of 12 maze arms. At the test session (3 h later), only the alternate set contained reward and entries into the sample set arms constituted errors. Intraseptal carbachol was administered: 1) 30 min prior; 2) immediately prior; 3) immediately after and 4) 90 min after the sample session. Intraseptal carbachol prior to the sample had no effect on any index of accuracy. Infusion immediately after the sample, or delayed 90 min into the retention interval, produced an acute amnesia. These findings demonstrate that the timing of treatment is a critical variable in determining the memory effects of septohippocampal manipulations and that dynamic changes in cholinergic tone are important for memory.


Neuroreport | 2004

Intraseptal tacrine can enhance memory in cognitively impaired young rats.

Helen R. Sabolek; Jamie G. Bunce; James J. Chrobak

The medial septum is rich in cholinergic receptors and is a target for the development of cognitive enhancers. Intraseptal cholinomimetics have produced both promnesic and amnesic effects. Several variables (e.g. age, task difficulty) may influence treatment outcome. The present study examined the effects of intraseptal tacrine in a group of young cognitively impaired rats. These rats had been culled from a difficult radial maze task because they could not achieve criterion performance. Tacrine (0–12.5 μg/0.5 μl) enhanced radial maze performance in these animals. This effect contrasts with findings that intraseptal choliomimetics often have no effect or disrupt performance in young rats. Understanding the conditions in which cholinomimetics are promnesic is important for the further development of cognitive enhancers.


Neurobiology of Aging | 2004

Within-subject memory decline in middle-aged rats: effects of intraseptal tacrine

Helen R. Sabolek; Jamie G. Bunce; Derek Giuliana; James J. Chrobak

A longitudinal design was used to examine spatial working memory performance in aging Long-Evans rats on a 12-arm, delayed-non-match-to-sample radial maze task. Compared to performance at 12-13 months of age, the same rats exhibited a significant performance deficit at 15-16 months of age across all retention intervals (1.5-10h). All rats exhibited some degree of decline, and no rat performed as well as they had 3 months earlier. This early onset deficit may relate to the degree of difficulty required to perform accurately in a task that maximizes both spatial information processing and flexible working memory representations. Following our observation, rats were implanted with a chronic cannula aimed at the medial septal nucleus. Acute intraseptal tacrine treatments (0.0-25 micrograms/0.5 microl) did not significantly affect any index of performance. Rats exhibited further memory decline over the course of testing (up to 20 months of age). Detection of early onset dysfunction could allow for experimental analysis of underlying mechanisms and therapeutic strategies early in the course of age-related changes.

Collaboration


Dive into the Helen R. Sabolek's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jamie G. Bunce

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

James R. Hinman

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Etan J. Markus

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Derek Giuliana

University of Connecticut

View shared research outputs
Researchain Logo
Decentralizing Knowledge