Helen Senn
Royal Zoological Society of Scotland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Helen Senn.
Trends in Ecology and Evolution | 2015
Aaron B. A. Shafer; Jochen B. W. Wolf; Paulo C. Alves; Linnea Bergström; Michael William Bruford; Ioana Onut Brännström; Guy Colling; Love Dalén; Luc De Meester; Robert Ekblom; Katie D. Fawcett; Simone Fior; Mehrdad Hajibabaei; Jason Hill; A. Rus Hoezel; Jacob Höglund; Evelyn L. Jensen; Johannes Krause; Torsten Nygaard Kristensen; Michael Kruetzen; John K. McKay; Anita J. Norman; Rob Ogden; E. Martin Österling; N. Joop Ouborg; John Piccolo; Danijela Popović; Craig R. Primmer; Floyd A. Reed; Marie Roumet
The global loss of biodiversity continues at an alarming rate. Genomic approaches have been suggested as a promising tool for conservation practice as scaling up to genome-wide data can improve traditional conservation genetic inferences and provide qualitatively novel insights. However, the generation of genomic data and subsequent analyses and interpretations remain challenging and largely confined to academic research in ecology and evolution. This generates a gap between basic research and applicable solutions for conservation managers faced with multifaceted problems. Before the real-world conservation potential of genomic research can be realized, we suggest that current infrastructures need to be modified, methods must mature, analytical pipelines need to be developed, and successful case studies must be disseminated to practitioners.
Molecular Ecology | 2009
Helen Senn; Josephine M. Pemberton
Instances of hybridization between endemic and alien species pose a threat to species integrity but also provide us with an opportunity to study the dynamics of gene flow between two species as they first meet. Here, we used variation at 22 highly differentiated microsatellite loci and one mitochondrial DNA (mtDNA) marker in a sample of 735 individuals, to investigate the genetic consequences of an introduction of Japanese sika deer (Cervus nippon) for native red deer (C. elaphus) on the Kintyre Peninsula in Scotland. We investigated population structure, estimated null‐allele frequency and assigned individual hybrid scores using a Bayesian clustering algorithm implemented in structure 2.2. The dataset clearly divided into two clusters and generally, introgression into red and sika was low. However at one site, West Loch Awe, 43% of individuals were hybrids. MtDNA introgression indicated that hybridization was occurring between red‐deer hinds and sika‐deer stags. We argue that the pattern of differential introgression across the study area is primarily due to the rarity of hybridization events between the two species and the limited time the two species have been in contact (< 120 years). This contrasts with the causes of classic mosaic hybrid zones (selection induced by habitat variability). Currently, it seems possible that, in time, the level of hybridization found at West Loch Awe could also be found across the whole of the peninsula.
Molecular Ecology | 2013
Rob Ogden; Karim Gharbi; N. Mugue; Jann Th. Martinsohn; Helen Senn; John W. Davey; M. Pourkazemi; Ross McEwing; Cathlene Eland; M. Vidotto; A. Sergeev; Leonardo Congiu
Caviar‐producing sturgeons belonging to the genus Acipenser are considered to be one of the most endangered species groups in the world. Continued overfishing in spite of increasing legislation, zero catch quotas and extensive aquaculture production have led to the collapse of wild stocks across Europe and Asia. The evolutionary relationships among Adriatic, Russian, Persian and Siberian sturgeons are complex because of past introgression events and remain poorly understood. Conservation management, traceability and enforcement suffer a lack of appropriate DNA markers for the genetic identification of sturgeon at the species, population and individual level. This study employed RAD sequencing to discover and characterize single nucleotide polymorphism (SNP) DNA markers for use in sturgeon conservation in these four tetraploid species over three biological levels, using a single sequencing lane. Four population meta‐samples and eight individual samples from one family were barcoded separately before sequencing. Analysis of 14.4 Gb of paired‐end RAD data focused on the identification of SNPs in the paired‐end contig, with subsequent in silico and empirical validation of candidate markers. Thousands of putatively informative markers were identified including, for the first time, SNPs that show population‐wide differentiation between Russian and Persian sturgeons, representing an important advance in our ability to manage these cryptic species. The results highlight the challenges of genotyping‐by‐sequencing in polyploid taxa, while establishing the potential genetic resources for developing a new range of caviar traceability and enforcement tools.
Molecular Ecology | 2013
Helen Senn; Rob Ogden; Timothee Cezard; Karim Gharbi; Zamin Iqbal; Eric A. Johnson; Nick Kamps-Hughes; Frank Rosell; Ross McEwing
In this study, we used restriction site–associated DNA (RAD) sequencing to discover SNP markers suitable for population genetic and parentage analysis with the aim of using them for monitoring the reintroduction of the Eurasian beaver (Castor fibre) to Scotland. In the absence of a reference genome for beaver, we built contigs and discovered SNPs within them using paired‐end RAD data, so as to have sufficient flanking region around the SNPs to conduct marker design. To do this, we used a simple pipeline which catalogued the Read 1 data in stacks and then used the assembler cortex_var to conduct de novo assembly and genotyping of multiple samples using the Read 2 data. The analysis of around 1.1 billion short reads of sequence data was reduced to a set of 2579 high‐quality candidate SNP markers that were polymorphic in Norwegian and Bavarian beaver. Both laboratory validation of a subset of eight of the SNPs (1.3% error) and internal validation by confirming patterns of Mendelian inheritance in a family group (0.9% error) confirmed the success of this approach.
Conservation Genetics Resources | 2012
Rob Ogden; Jan Baird; Helen Senn; Ross McEwing
The potential use of single nucleotide polymorphism markers (SNPs) in conservation genetics is widely recognized; however, methods for discovering large numbers of SNPs typically rely on relatively expensive, genome-wide, species-specific research projects which limits their development in many taxa. Here we describe the use of high-density SNP genotyping arrays designed for cattle to discover SNPs in two antelope species. From a total of 54,001 SNP markers on the array, the analysis yielded 148 polymorphic markers in the scimitar-horned oryx and 149 in the Arabian oryx. The results represent a first step toward developing SNP marker panels for ongoing projects on each species. As high density genotyping arrays become available for an increasing number of model species, this approach has the potential to generate SNP markers, rapidly and affordably, in a broad range of species for conservation genetic research.
Molecular Ecology | 2010
Helen Senn; Nicholas H. Barton; Simon J. Goodman; Graeme M. Swanson; Katharine Abernethy; Josephine M. Pemberton
We investigated temporal changes in hybridization and introgression between native red deer (Cervus elaphus) and invasive Japanese sika (Cervus nippon) on the Kintyre Peninsula, Scotland, over 15 years, through analysis of 1513 samples of deer at 20 microsatellite loci and a mtDNA marker. We found no evidence that either the proportion of recent hybrids, or the levels of introgression had changed over the study period. Nevertheless, in one population where the two species have been in contact since ∼1970, 44% of individuals sampled during the study were hybrids. This suggests that hybridization between these species can proceed fairly rapidly. By analysing the number of alleles that have introgressed from polymorphic red deer into the genetically homogenous sika population, we reconstructed the haplotypes of red deer alleles introduced by backcrossing. Five separate hybridization events could account for all the recently hybridized sika‐like individuals found across a large section of the Peninsula. Although we demonstrate that low rates of F1 hybridization can lead to substantial introgression, the progress of hybridization and introgression appears to be unpredictable over the short timescales.
Evolutionary Applications | 2014
Helen Senn; Rob Ogden; Christiane Frosch; Alena Syrůčková; Roisin Campbell-Palmer; Pavel Munclinger; Walter Durka; Robert H. S. Kraus; Alexander P. Saveljev; Carsten Nowak; Annegret Stubbe; Michael Stubbe; Johan Michaux; Vladimir Lavrov; Ravchig Samiya; Alius Ulevičius; Frank Rosell
Many reintroduction projects for conservation fail, and there are a large number of factors that may contribute to failure. Genetic analysis can be used to help stack the odds of a reintroduction in favour of success, by conducting assessment of source populations to evaluate the possibility of inbreeding and outbreeding depression and by conducting postrelease monitoring. In this study, we use a panel of 306 SNP (single nucleotide polymorphism) markers and 487–489 base pairs of mitochondrial DNA control region sequence data to examine 321 individuals from possible source populations of the Eurasian beaver for a reintroduction to Scotland. We use this information to reassess the phylogenetic history of the Eurasian beavers, to examine the genetic legacy of past reintroductions on the Eurasian landmass and to assess the future power of the genetic markers to conduct ongoing monitoring via parentage analysis and individual identification. We demonstrate the capacity of medium density genetic data (hundreds of SNPs) to provide information suitable for applied conservation and discuss the difficulty of balancing the need for high genetic diversity against phylogenetic best fit when choosing source population(s) for reintroduction.
Journal of Animal Ecology | 2010
Helen Senn; Graeme M. Swanson; Simon J. Goodman; Nicholas H. Barton; Josephine M. Pemberton
1. Hybridisation with an invasive species has the potential to alter the phenotype and hence the ecology of a native counterpart. 2. Here data from populations of native red deer Cervus elaphus and invasive sika deer Cervus nippon in Scotland is used to assess the extent to which hybridisation between them is causing phenotypic change. This is done by regression of phenotypic traits against genetic hybrid scores. 3. Hybridisation is causing increases in the body weight of sika-like deer and decreases in the body weight of red-like females. Hybridisation is causing increases in jaw length and increases in incisor arcade breadth in sika-like females. Hybridisation is also causing decreases in incisor arcade breadth in red-like females. 4. There is currently no evidence that hybridisation is causing changes in the kidney fat weight or pregnancy rates of either population. 5. Increased phenotypic similarity between the two species is likely to lead to further hybridisation. The ecological consequences of this are difficult to predict.
PLOS ONE | 2014
Helen Senn; Lisa Banfield; Tim Wacher; John Newby; Thomas Rabeil; Jennifer Kaden; Andrew C. Kitchener; Teresa Abáigar; Teresa Luísa Silva; Mike Maunder; Rob Ogden
Managers of threatened species often face the dilemma of whether to keep populations separate to conserve local adaptations and minimize the risk of outbreeding, or whether to manage populations jointly to reduce loss of genetic diversity and minimise inbreeding. In this study we examine genetic relatedness and diversity in three of the five last remaining wild populations of dama gazelle and a number of captive populations, using mtDNA control region and cytochrome b data. Despite the sampled populations belonging to the three putative subspecies, which are delineated according to phenotypes and geographical location, we find limited evidence for phylogeographical structure within the data and no genetic support for the putative subspecies. In the light of these data we discuss the relevance of inbreeding depression, outbreeding depression, adaptive variation, genetic drift, and phenotypic variation to the conservation of the dama gazelle and make some recommendations for its future conservation management. The genetic data suggest that the best conservation approach is to view the dama gazelle as a single species without subspecific divisions.
Conservation Genetics | 2012
Husam El Alqamy; Helen Senn; Mary-Francis Roberts; Ross McEwing; Rob Ogden
Since being declared extinct in the wild in 1972, the Arabian oryx has been the subject of intense and sustained effort to maintain a healthy captive population and to reintroduce the species to its ancestral range. Previous reintroductions and associated genetic assessments focused on the release of closely managed zoo animals into Oman and included observations of inbreeding and outbreeding depression. Here we describe the use of multiple unmanaged herds as source populations for a new reintroduction project in the United Arab Emirates, allowing a comparison between studbook management and uncontrolled semi-captive breeding approaches to the conservation of genetic diversity. Results of mitochondrial control region sequencing and 13-locus microsatellite profiling highlight a severe lack of diversity within individual source populations, but a level of differentiation among populations that supports the formation of a mixed founder herd. The combined release group contained a similar level of diversity to each of the intensively managed captive populations. The research includes the first genetic data for animals held on Sir Bani Yas Island, a former private reserve which until recently held over 50% of the world’s Arabian and scimitar-horned oryx and is recognized as having huge potential for re-establishing endangered antelope species in the wild. The genetic assessment provides the first stage of an ongoing genetic monitoring programme to support future supplemental releases, translocations and genetic management of reintroduced populations.