Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Helen Y. Zou is active.

Publication


Featured researches published by Helen Y. Zou.


Molecular Cancer Therapeutics | 2007

Cytoreductive antitumor activity of PF-2341066, a novel inhibitor of anaplastic lymphoma kinase and c-Met, in experimental models of anaplastic large-cell lymphoma

James G. Christensen; Helen Y. Zou; Maria E. Arango; Qiuhua Li; Joseph H. Lee; Scott R. McDonnell; Shinji Yamazaki; Gordon Alton; Barbara Mroczkowski; Gerrit Los

A t(2;5) chromosomal translocation resulting in expression of an oncogenic kinase fusion protein known as nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) has been implicated in the pathogenesis of anaplastic large-cell lymphoma (ALCL). PF-2341066 was recently identified as a p.o. bioavailable, small-molecule inhibitor of the catalytic activity of c-Met kinase and the NPM-ALK fusion protein. PF-2341066 also potently inhibited NPM-ALK phosphorylation in Karpas299 or SU-DHL-1 ALCL cells (mean IC50 value, 24 nmol/L). In biochemical and cellular screens, PF-2341066 was shown to be selective for c-Met and ALK at pharmacologically relevant concentrations across a panel of >120 diverse kinases. PF-2341066 potently inhibited cell proliferation, which was associated with G1-S–phase cell cycle arrest and induction of apoptosis in ALK-positive ALCL cells (IC50 values, ∼30 nmol/L) but not ALK-negative lymphoma cells. The induction of apoptosis was confirmed using terminal deoxyribonucleotide transferase–mediated nick-end labeling and Annexin V staining (IC50 values, 25–50 nmol/L). P.o. administration of PF-2341066 to severe combined immunodeficient-Beige mice bearing Karpas299 ALCL tumor xenografts resulted in dose-dependent antitumor efficacy with complete regression of all tumors at the 100 mg/kg/d dose within 15 days of initial compound administration. A strong correlation was observed between antitumor response and inhibition of NPM-ALK phosphorylation and induction of apoptosis in tumor tissue. In addition, inhibition of key NPM-ALK signaling mediators, including phospholipase C-γ, signal transducers and activators of transcription 3, extracellular signal-regulated kinases, and Akt by PF-2341066 were observed at concentrations or dose levels, which correlated with inhibition of NPM-ALK phosphorylation and function. Collectively, these data illustrate the potential clinical utility of inhibitors of NPM-ALK in treatment of patients with ALK-positive ALCL. [Mol Cancer Ther 2007;6(12):3314–22]


Journal of Medicinal Chemistry | 2011

Structure Based Drug Design of Crizotinib (Pf-02341066), a Potent and Selective Dual Inhibitor of Mesenchymal-Epithelial Transition Factor (C-met) Kinase and Anaplastic Lymphoma Kinase (Alk).

J. Jean Cui; Michelle Bich Tran-Dube; Hong Shen; Mitchell David Nambu; Pei-Pei Kung; Mason Alan Pairish; Lei Jia; Jerry Meng; Lee Andrew Funk; Iriny Botrous; Michele McTigue; Neil Grodsky; Kevin Ryan; Ellen Padrique; Gordon Alton; Sergei Timofeevski; Shinji Yamazaki; Qiuhua Li; Helen Y. Zou; James G. Christensen; Barbara Mroczkowski; Steve Bender; Robert Steven Kania; Martin Paul Edwards

Because of the critical roles of aberrant signaling in cancer, both c-MET and ALK receptor tyrosine kinases are attractive oncology targets for therapeutic intervention. The cocrystal structure of 3 (PHA-665752), bound to c-MET kinase domain, revealed a novel ATP site environment, which served as the target to guide parallel, multiattribute drug design. A novel 2-amino-5-aryl-3-benzyloxypyridine series was created to more effectively make the key interactions achieved with 3. In the novel series, the 2-aminopyridine core allowed a 3-benzyloxy group to reach into the same pocket as the 2,6-dichlorophenyl group of 3 via a more direct vector and thus with a better ligand efficiency (LE). Further optimization of the lead series generated the clinical candidate crizotinib (PF-02341066), which demonstrated potent in vitro and in vivo c-MET kinase and ALK inhibition, effective tumor growth inhibition, and good pharmaceutical properties.


Clinical Cancer Research | 2008

Nonclinical Antiangiogenesis and Antitumor Activities of Axitinib (AG-013736), an Oral, Potent, and Selective Inhibitor of Vascular Endothelial Growth Factor Receptor Tyrosine Kinases 1, 2, 3

Dana Hu-Lowe; Helen Y. Zou; Maren Grazzini; Max Hallin; Grant Raymond Wickman; Karin Kristina Amundson; Jeffrey H. Chen; David A. Rewolinski; Shinji Yamazaki; Ellen Y. Wu; Michele McTigue; Brion W. Murray; Robert Steven Kania; Patrick O'Connor; David R. Shalinsky; Steve Bender

Purpose: Axitinib (AG-013736) is a potent and selective inhibitor of vascular endothelial growth factor (VEGF) receptor tyrosine kinases 1 to 3 that is in clinical development for the treatment of solid tumors. We provide a comprehensive description of its in vitro characteristics and activities, in vivo antiangiogenesis, and antitumor efficacy and translational pharmacology data. Experimental Design: The potency, kinase selectivity, pharmacologic activity, and antitumor efficacy of axitinib were assessed in various nonclinical models. Results: Axitinib inhibits cellular autophosphorylation of VEGF receptors (VEGFR) with picomolar IC50 values. Counterscreening across multiple kinase and protein panels shows it is selective for VEGFRs. Axitinib blocks VEGF-mediated endothelial cell survival, tube formation, and downstream signaling through endothelial nitric oxide synthase, Akt and extracellular signal-regulated kinase. Following twice daily oral administration, axitinib produces consistent and dose-dependent antitumor efficacy that is associated with blocking VEGFR-2 phosphorylation, vascular permeability, angiogenesis, and concomitant induction of tumor cell apoptosis. Axitinib in combination with chemotherapeutic or targeted agents enhances antitumor efficacy in many tumor models compared with single agent alone. Dose scheduling studies in a human pancreatic tumor xenograft model show that simultaneous administration of axitinib and gemcitabine without prolonged dose interruption or truncation of axitinib produces the greatest antitumor efficacy. The efficacious drug concentrations predicted in nonclinical studies are consistent with the range achieved in the clinic. Although axitinib inhibits platelet-derived growth factor receptors and KIT with nanomolar in vitro potencies, based on pharmacokinetic/pharmacodynamic analysis, axitinib acts primarily as a VEGFR tyrosine kinase inhibitor at the current clinical exposure. Conclusions: The selectivity, potency for VEGFRs, and robust nonclinical activity may afford broad opportunities for axitinib to improve cancer therapy.


Annals of the New York Academy of Sciences | 1999

Broad antitumor and antiangiogenic activities of AG3340, a potent and selective MMP inhibitor undergoing advanced oncology clinical trials.

David R. Shalinsky; John Brekken; Helen Y. Zou; Charles D. McDermott; Peter A. Forsyth; Dylan R. Edwards; S. Margosiak; S. Bender; G. Truitt; Alexander W. Wood; Nissi M. Varki; Krzysztof Appelt

ABSTRACT: We studied AG3340, a potent metalloproteinase (MMP) inhibitor with pM affinities for inhibiting gelatinases (MMP‐2 and ‐9), MT‐MMP‐1 (MMP‐14), and collagenase‐3 (MMP‐13) in many tumor models. AG3340 produced dose‐dependent pharmacokinetics and was well tolerated after intraperitoneal (i.p.) and oral dosing in mice. Across human tumor models, AG3340 produced profound tumor growth delays when dosing began early or late after tumor implantation, although all established tumor types did not respond to AG3340. A dose‐response relationship was explored in three models: COLO‐320DM colon, MV522 lung, and MDA‐MB‐435 breast. Dose‐dependent inhibitions of tumor growth (over 12.5‐200 mg/kg given twice daily, b.i.d.) were observed in the colon and lung models; and in a third (breast), maximal inhibitions were produced by the lowest dose of AG3340 (50 mg/kg, b.i.d.) that was tested. In another model, AG3340 (100 mg/kg, once daily, i.p.) markedly inhibited U87 glioma growth and increased animal survival. AG3340 also inhibited tumor growth and increased the survival of nude mice bearing androgen‐independent PC‐3 prostatic tumors. In a sixth model, KKLS gastric, AG3340 did not inhibit tumor growth but potentiated the efficacy of Taxol. Importantly, AG3340 markedly decreased tumor angiogenesis (as assessed by CD‐31 staining) and cell proliferation (as assessed by bromodeoxyuridine incorporation), and increased tumor necrosis and apoptosis (as assessed by hematoxylin and eosin and TUNEL staining). These effects were model dependent, but angiogenesis was commonly inhibited. AG3340 had a superior therapeutic index to the cytotoxic agents, carboplatin and Taxol, in the MV522 lung cancer model. In combination, AG3340 enhanced the efficacy of these cytotoxic agents without altering drug tolerance. Additionally, AG3340 decreased the number of murine melanoma (B16‐F10) lesions arising in the lung in an intravenous metastasis model when given in combination with carboplatin or Taxol. These studies directly support the use of AG3340 in front‐line combination chemotherapy in ongoing clinical trials in patients with advanced malignancies of the lung and prostate.


Journal of Medicinal Chemistry | 2014

Discovery of (10R)-7-amino-12-fluoro-2,10,16-trimethyl-15-oxo-10,15,16,17-tetrahydro-2H-8,4-(metheno)pyrazolo[4,3-h][2,5,11]-benzoxadiazacyclotetradecine-3-carbonitrile (PF-06463922), a macrocyclic inhibitor of anaplastic lymphoma kinase (ALK) and c-ros oncogene 1 (ROS1) with preclinical brain exposure and broad-spectrum potency against ALK-resistant mutations.

Ted W. Johnson; Paul F. Richardson; Simon Bailey; Alexei Brooun; Benjamin J. Burke; Michael Raymond Collins; J. Jean Cui; Judith Gail Deal; Ya-Li Deng; Dac M. Dinh; Lars D. Engstrom; Mingying He; Jacqui Elizabeth Hoffman; Robert Louis Hoffman; Qinhua Huang; Robert Steven Kania; John Charles Kath; Hieu Lam; Justine L. Lam; Phuong Thi Quy Le; Laura Lingardo; Wei Liu; Michele McTigue; Cynthia Louise Palmer; Neal W. Sach; Tod Smeal; Graham L. Smith; Albert E. Stewart; Sergei Timofeevski; Huichun Zhu

Although crizotinib demonstrates robust efficacy in anaplastic lymphoma kinase (ALK)-positive non-small-cell lung carcinoma patients, progression during treatment eventually develops. Resistant patient samples revealed a variety of point mutations in the kinase domain of ALK, including the L1196M gatekeeper mutation. In addition, some patients progress due to cancer metastasis in the brain. Using structure-based drug design, lipophilic efficiency, and physical-property-based optimization, highly potent macrocyclic ALK inhibitors were prepared with good absorption, distribution, metabolism, and excretion (ADME), low propensity for p-glycoprotein 1-mediated efflux, and good passive permeability. These structurally unusual macrocyclic inhibitors were potent against wild-type ALK and clinically reported ALK kinase domain mutations. Significant synthetic challenges were overcome, utilizing novel transformations to enable the use of these macrocycles in drug discovery paradigms. This work led to the discovery of 8k (PF-06463922), combining broad-spectrum potency, central nervous system ADME, and a high degree of kinase selectivity.


Cancer Cell | 2015

PF-06463922, an ALK/ROS1 Inhibitor, Overcomes Resistance to First and Second Generation ALK Inhibitors in Preclinical Models

Helen Y. Zou; Luc Friboulet; David P. Kodack; Lars D. Engstrom; Qiuhua Li; Melissa West; Ruth W. Tang; Hui Wang; Konstantinos Tsaparikos; Jinwei Wang; Sergei Timofeevski; Ryohei Katayama; Dac M. Dinh; Hieu Lam; Justine L. Lam; Shinji Yamazaki; Wenyue Hu; Bhushankumar Patel; Divya Bezwada; Rosa L. Frias; Eugene Lifshits; Sidra Mahmood; Justin F. Gainor; Timothy Affolter; Patrick B. Lappin; Hovhannes J. Gukasyan; Nathan V. Lee; Shibing Deng; Rakesh K. Jain; Ted W. Johnson

We report the preclinical evaluation of PF-06463922, a potent and brain-penetrant ALK/ROS1 inhibitor. Compared with other clinically available ALK inhibitors, PF-06463922 displayed superior potency against all known clinically acquired ALK mutations, including the highly resistant G1202R mutant. Furthermore, PF-06463922 treatment led to regression of EML4-ALK-driven brain metastases, leading to prolonged mouse survival, in a superior manner. Finally, PF-06463922 demonstrated high selectivity and safety margins in a variety of preclinical studies. These results suggest that PF-06463922 will be highly effective for the treatment of patients with ALK-driven lung cancers, including those who relapsed on clinically available ALK inhibitors because of secondary ALK kinase domain mutations and/or brain metastases.


Proceedings of the National Academy of Sciences of the United States of America | 2015

PF-06463922 is a potent and selective next-generation ROS1/ALK inhibitor capable of blocking crizotinib-resistant ROS1 mutations

Helen Y. Zou; Qiuhua Li; Lars D. Engstrom; Melissa West; Vicky Appleman; Katy A. Wong; Michele McTigue; Ya-Li Deng; Wei Liu; Alexei Brooun; Sergei Timofeevski; Scott R. McDonnell; Ping Jiang; Matthew D. Falk; Patrick B. Lappin; Timothy Affolter; Tim Nichols; Wenyue Hu; Justine L. Lam; Ted W. Johnson; Tod Smeal; Al Charest; Valeria R. Fantin

Significance Overcoming resistance to targeted kinase inhibitors is a major clinical challenge in oncology. Development of crizotinib resistance through the emergence of a secondary ROS1 mutation, ROS1G2032R, was observed in patients with ROS1 fusion-positive lung cancer. In addition, a novel ROS1 fusion recently has been identified in glioblastoma. A new agent with robust activity against the ROS1G2032R mutation and with CNS activity is needed to address these unmet medical needs. Here we report the identification of PF-06463922, a ROS1/anaplastic lymphoma kinase (ALK) inhibitor, with exquisite potency against ROS1 fusion kinases, capable of inhibiting the ROS1G2032R mutation and FIG-ROS1–driven glioblastoma tumor growth in preclinical models. PF-06463922 demonstrated excellent therapeutic potential against ROS1 fusion-driven cancers, and it currently is undergoing phase I/II clinical trial investigation. Oncogenic c-ros oncogene1 (ROS1) fusion kinases have been identified in a variety of human cancers and are attractive targets for cancer therapy. The MET/ALK/ROS1 inhibitor crizotinib (Xalkori, PF-02341066) has demonstrated promising clinical activity in ROS1 fusion-positive non-small cell lung cancer. However, emerging clinical evidence has shown that patients can develop resistance by acquiring secondary point mutations in ROS1 kinase. In this study we characterized the ROS1 activity of PF-06463922, a novel, orally available, CNS-penetrant, ATP-competitive small-molecule inhibitor of ALK/ROS1. In vitro, PF-06463922 exhibited subnanomolar cellular potency against oncogenic ROS1 fusions and inhibited the crizotinib-refractory ROS1G2032R mutation and the ROS1G2026M gatekeeper mutation. Compared with crizotinib and the second-generation ALK/ROS1 inhibitors ceritinib and alectinib, PF-06463922 showed significantly improved inhibitory activity against ROS1 kinase. A crystal structure of the PF-06463922-ROS1 kinase complex revealed favorable interactions contributing to the high-affinity binding. In vivo, PF-06463922 showed marked antitumor activity in tumor models expressing FIG-ROS1, CD74-ROS1, and the CD74-ROS1G2032R mutation. Furthermore, PF-06463922 demonstrated antitumor activity in a genetically engineered mouse model of FIG-ROS1 glioblastoma. Taken together, our results indicate that PF-06463922 has potential for treating ROS1 fusion-positive cancers, including those requiring agents with CNS-penetrating properties, as well as for overcoming crizotinib resistance driven by ROS1 mutation.


Drug Metabolism and Disposition | 2008

Pharmacokinetic-Pharmacodynamic Modeling of Biomarker Response and Tumor Growth Inhibition to an Orally Available cMet Kinase Inhibitor in Human Tumor Xenograft Mouse Models

Shinji Yamazaki; Judith Skaptason; David Romero; Joseph H. Lee; Helen Y. Zou; James G. Christensen; Jeffrey R. Koup; Bill J. Smith; Tatiana Koudriakova

(R)-3-[1-(2,6-Dichloro-3-fluoro-phenyl)-ethoxy]-5-(1-piperidin-4-yl-1H-pyrazol-4-yl)-pyridin-2-ylamine (PF02341066) was identified as an orally available, ATP-competitive small molecule inhibitor of cMet receptor tyrosine kinase. The objectives of the present studies were to characterize 1) the pharmacokinetic-pharmacodynamic relationship of the plasma concentrations of PF02341066 to cMet phosphorylation in tumor (biomarker) and 2) the relationship of cMet phosphorylation to antitumor efficacy (pharmacological response). Athymic mice implanted with GTL16 gastric carcinoma or U87MG glioblastoma xenografts were treated with PF02341066 once daily at doses selected to encompass ED50 values. Plasma concentrations of PF02341066 were best described by a one-compartment pharmacokinetic model. A time-delay (hysteresis) was observed between the plasma concentrations of PF02341066 and the cMet phosphorylation response. A link model was therefore used to account for this hysteresis. The model fitted the time courses of cMet phosphorylation well, suggesting that the main reason for the hysteresis is a rate-limiting distribution from plasma into tumor. The EC50 and EC90 values were estimated to be 19 and 167 ng/ml, respectively. For tumor growth inhibition, the exponential tumor growth model fitted the time courses of individual tumor growth inhibition well. The EC50 for the GTL16 tumor growth inhibition was estimated to be 213 ng/ml. Thus, the EC90 for the inhibition of cMet phosphorylation corresponded to the EC50 for the tumor growth inhibition, suggesting that near-complete inhibition of cMet phosphorylation (>90%) is required to significantly inhibit tumor growth (>50%). The present results will be helpful in determining the appropriate dosing regimen and in guiding dose escalation to rapidly achieve efficacious systemic exposure in the clinic.


Biochemistry | 2009

Enzymatic Characterization of c-Met Receptor Tyrosine Kinase Oncogenic Mutants and Kinetic Studies with Aminopyridine and Triazolopyrazine Inhibitors

Sergei Timofeevski; Michele McTigue; Kevin Ryan; Jean Cui; Helen Y. Zou; Jeff Xianchao Zhu; Fannie Chau; Gordon Alton; Shannon Marie Karlicek; James G. Christensen; Brion W. Murray

The c-Met receptor tyrosine kinase (RTK) is a key regulator in cancer, in part, through oncogenic mutations. Eight clinically relevant mutants were characterized by biochemical, biophysical, and cellular methods. The c-Met catalytic domain was highly active in the unphosphorylated state (k(cat) = 1.0 s(-1)) and achieved 160-fold enhanced catalytic efficiency (k(cat)/K(m)) upon activation to 425000 s(-1) M(-1). c-Met mutants had 2-10-fold higher basal enzymatic activity (k(cat)) but achieved maximal activities similar to those of wild-type c-Met, except for Y1235D, which underwent a reduction in maximal activity. Small enhancements of basal activity were shown to have profound effects on the acquisition of full enzymatic activity achieved through accelerating rates of autophosphorylation. Biophysical analysis of c-Met mutants revealed minimal melting temperature differences indicating that the mutations did not alter protein stability. A model of RTK activation is proposed to describe how a RTK response may be matched to a biological context through enzymatic properties. Two c-Met clinical candidates from aminopyridine and triazolopyrazine chemical series (PF-02341066 and PF-04217903) were studied. Biochemically, each series produced molecules that are highly selective against a large panel of kinases, with PF-04217903 (>1000-fold selective relative to 208 kinases) being more selective than PF-02341066. Although these prototype inhibitors have similar potencies against wild-type c-Met (K(i) = 6-7 nM), significant differences in potency were observed for clinically relevant mutations evaluated in both biochemical and cellular contexts. In particular, PF-02341066 was 180-fold more active against the Y1230C mutant c-Met than PF-04217903. These highly optimized inhibitors indicate that for kinases susceptible to active site mutations, inhibitor design may need to balance overall kinase selectivity with the ability to inhibit multiple mutant forms of the kinase (penetrance).


Journal of Pharmacology and Experimental Therapeutics | 2012

Pharmacokinetic/Pharmacodynamic Modeling of Crizotinib for Anaplastic Lymphoma Kinase Inhibition and Antitumor Efficacy in Human Tumor Xenograft Mouse Models

Shinji Yamazaki; Paolo Vicini; Zhongzhou Shen; Helen Y. Zou; Joseph Lee; Qiuhua Li; James G. Christensen; Bill J. Smith; Bhasker Shetty

Crizotinib [Xalkori; PF02341066; (R)-3-[1-(2,6-dichloro-3-fluoro-phenyl)-ethoxy]-5-(1-piperidin-4-yl-1H-pyrazol-4-yl)-pyridin-2-ylamine] is an orally available dual inhibitor of anaplastic lymphoma kinase (ALK) and hepatocyte growth factor receptor. The objectives of the present studies were to characterize: 1) the pharmacokinetic/pharmacodynamic relationship of crizotinib plasma concentrations to the inhibition of ALK phosphorylation in tumors, and 2) the relationship of ALK inhibition to antitumor efficacy in human tumor xenograft models. Crizotinib was orally administered to athymic nu/nu mice implanted with H3122 non–small-cell lung carcinomas or severe combined immunodeficient/beige mice implanted with Karpas299 anaplastic large-cell lymphomas. Plasma concentration-time courses of crizotinib were adequately described by a one-compartment pharmacokinetic model. A pharmacodynamic link model reasonably fit the time courses of ALK inhibition in both H3122 and Karpas299 models with EC50 values of 233 and 666 ng/ml, respectively. A tumor growth inhibition model also reasonably fit the time course of individual tumor growth curves with EC50 values of 255 and 875 ng/ml, respectively. Thus, the EC50 for ALK inhibition approximately corresponded to the EC50 for tumor growth inhibition in both xenograft models, suggesting that >50% ALK inhibition would be required for significant antitumor efficacy (>50%). Furthermore, based on the observed clinical pharmacokinetic data coupled with the pharmacodynamic parameters obtained from the present nonclinical xenograft mouse model, >70% ALK inhibition was projected in patients with non–small-cell lung cancer who were administered the clinically recommended dosage of crizotinib, twice-daily doses of 250 mg (500 mg/day). The result suggests that crizotinib could sufficiently inhibit ALK phosphorylation for significant antitumor efficacy in patients.

Collaboration


Dive into the Helen Y. Zou's collaboration.

Researchain Logo
Decentralizing Knowledge