Helena B. Nader
Federal University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Helena B. Nader.
Anais Da Academia Brasileira De Ciencias | 2009
Juliana L. Dreyfuss; Caio V. Regatieri; Thais R. Jarrouge; Renan P. Cavalheiro; Lucia O. Sampaio; Helena B. Nader
Heparan sulfate proteoglycans are ubiquitously found at the cell surface and extracellular matrix in all the animal species. This review will focus on the structural characteristics of the heparan sulfate proteoglycans related to protein interactions leading to cell signaling. The heparan sulfate chains due to their vast structural diversity are able to bind and interact with a wide variety of proteins, such as growth factors, chemokines, morphogens, extracellular matrix components, enzymes, among others. There is a specificity directing the interactions of heparan sulfates and target proteins, regarding both the fine structure of the polysaccharide chain as well precise protein motifs. Heparan sulfates play a role in cellular signaling either as receptor or co-receptor for different ligands, and the activation of downstream pathways is related to phosphorylation of different cytosolic proteins either directly or involving cytoskeleton interactions leading to gene regulation. The role of the heparan sulfate proteoglycans in cellular signaling and endocytic uptake pathways is also discussed.
Biochimica et Biophysica Acta | 2000
Guilherme Fulgêncio de Medeiros; Aline Mendes; Ricardo A.B. Castro; Elaine C. Baú; Helena B. Nader; Carl P. Dietrich
Sulfated glycosaminoglycans were isolated from 23 species of 13 phyla of invertebrates and characterized by their electrophoretic migration in three different buffer systems coupled with enzymatic degradation using bacterial heparinase, heparitinases and chondroitinase AC. Heparan sulfate is a ubiquitous compound present in all species analyzed whereas chondroitin sulfate was present in 20 species and heparin-like compounds in 12 species of the invertebrates. The heparin-like compounds were purified from the echinoderm Mellita quinquisperforata (sand dollar) and the crustacean Ucides cordatus (crab) with anticoagulant activities of 60 and 52 IU/mg, respectively. Degradation of these heparins with heparinase produced significant amounts of the trisulfated disaccharide typical of mammalian heparins. This was confirmed by 13C-NMR spectroscopy of the crab heparin. An updated phylogenetic tree of the distribution of sulfated glycosaminoglycans in the animal kingdom is also presented.
Journal of Biological Chemistry | 2005
Hugo Alexandre Oliveira Rocha; Fábio A. Moraes; Edvaldo S. Trindade; Célia Regina C. Franco; Ricardo J. S. Torquato; Silvio S. Veiga; Ana Paula Valente; Paulo A.S. Mourão; Edda Lisboa Leite; Helena B. Nader; Carl P. Dietrich
The brown alga Spatoglossum schroederi contains three fractions of sulfated polysaccharides. One of them was purified by acetone fractionation, ion exchange, and molecular sieving chromatography. It has a molecular size of 21.5 kDa and contains fucose, xylose, galactose, and sulfate in a molar ratio of 1.0:0.5:2.0:2.0 and contains trace amounts of glucuronic acid. Chemical analyses, methylation studies, and NMR spectroscopy showed that the polysaccharide has a unique structure, composed of a central core formed mainly by 4-linked β-galactose units, partially sulfated at the 3-O position. Approximately 25% of these units contain branches of oligosaccharides (mostly tetrasaccharides) composed of 3-sulfated, 4-linked α-fucose and one or two nonsulfated, 4-linked β-xylose units at the reducing and nonreducing end, respectively. This sulfated galactofucan showed no anticoagulant activity on several “in vitro” assays. Nevertheless, it had a potent antithrombotic activity on an animal model of experimental venous thrombosis. This effect is time-dependent, reaching the maximum 8 h after its administration compared with the more transient action of heparin. The effect was not observed with the desulfated molecule. Furthermore, the sulfated galactofucan was 2-fold more potent than heparin in stimulating the synthesis of an antithrombotic heparan sulfate by endothelial cells. Again, this action was also abolished by desulfation of the polysaccharide. Because this sulfated galactofucan has no anticoagulant activity but strongly stimulates the synthesis of heparan sulfate by endothelial cells, we suggested that this last effect may be related to the “in vivo” antithrombotic activity of this polysaccharide. In this case the highly sulfated heparan sulfate produced by the endothelial cells is in fact the antithrombotic agent. Our results suggested that this sulfated galactofucan may have a potential application as an antithrombotic drug.
Biochimica et Biophysica Acta | 1974
Carl P. Dietrich; Helena B. Nader
Abstract Several commerical batches of heparitin sulfate extracted from beef lung tissue were fractionated into at least four distinct mucopolysaccharides by a combination of polyacrylamide and agarose gel electrophoresis. The four heparitin sulfates (A, B, C and D) were distinguished from each other and from heparin by several physical and chemical properties such as electrophoretic migration, molecular weight, presence of N-acetyl, N- and )-sulfate residues, optical rotation and enzymatic degradation. Of particular significance was the isolation of a heparitin sulfate (heparitin sulfate C) with a homogeneous molecular weight.
Biochemical and Biophysical Research Communications | 1983
Carl P. Dietrich; Helena B. Nader; Anita H. Straus
Some structural features of thirteen heparan sulfates isolated from different mammalian tissues and species are reported. Two N-acetylated disaccharides, one of then O-sulfated and two N-sulfated disaccharides, one of then 6-sulfated are formed from these compounds by the combined action of heparitinases I and II from Flavobacterium heparinum. The relative proportions of the four disaccharide units vary quite significantly among the thirteen heparan sulfates indicating that the structure of these polymers are tissue and species specific. Based on the frequency of appearance of each one of the disaccharides it was calculated that 10(36) types of heparan sulfates might theoretically be found. The possible role of these polyanions in cell-cell recognition is discussed in view of the present findings.
Toxicon | 2002
Rafael Bertoni da Silveira; José F. dos Santos Filho; Oldemir C. Mangili; Silvio Sanches Veiga; Waldemiro Gremski; Helena B. Nader; Carl P. Dietrich
In the present investigation, in order to dispute the rational criticism against the presence of proteolytic enzymes in the electrostimulated venom obtained from spiders of the genus Loxosceles, as a consequence of contamination with abdominal secretions, venoms of L. intermedia and L. laeta were directly collected from venom glands by microdissection and gentle homogenization. Gel electrophoresis stained by silver method carried out to compare L. intermedia electrostimulated venom and venom gland extract demonstrated no significant differences in protein profile. Zymogram analysis of L. intermedia venom gland extract detected a gelatinolytic activity in the 32-35 kDa region. The inhibitory effect of 1,10-phenanthroline on this proteolytic activity further supported its metalloprotease nature. In proteolytic digestion experiments L. intermedia venom gland extract was also able to cleave purified fibronectin and fibrinogen. The inhibitory effect of 1,10-phenanthroline on these degrading activities confirmed the presence of metalloproteases in the venom. In addition, when purified fibrinogen was incubated with L. intermedia abdominal extract, the fibrinogenolysis was completely different, generating low mass fragments that ran away from the gel, a proteolytic event not blocked by 1,10-phenanthroline. Zymogram experiments using L. laeta venom gland extracts further detected a gelatinolytic band at 32-35 kDa, also inhibited by 1,10-phenanthroline, confirming the presence of metalloproteases in both species.
Liver International | 2006
Edison Roberto Parise; Ana Cláudia de Oliveira; Cláudio Figueiredo-Mendes; Valéria Pereira Lanzoni; João Roberto Maciel Martins; Helena B. Nader; Maria Lucia G. Ferraz
Abstract: Aim: Several noninvasive markers are being used to assess the structural liver damage in patients with chronic hepatitis C (CHC). We evaluated the capacity of serum hyaluronic acid (HA), aspartate aminotransferase (AST)/ALT ratio, the AST to platelet ratio index (APRI) and γ‐glutamyltransferase (GGT) levels to predict the intensity of hepatic fibrosis in patients with CHC.
Biochemical and Biophysical Research Communications | 1974
Helena B. Nader; Norman M. McDuffie; Carl P. Dietrich
Abstract Electrofocalization of heparin with ampholyte mixtures pH 3.0 to 5.0 has shown the presence of at least 21 components in several commercial heparin preparations. The difference between these 21 components resides exclusively in their molecular weights which range from 3 000 to 37 500.
Analytical Biochemistry | 2003
João Roberto Maciel Martins; Carlo C. Passerotti; Rui M. B. Maciel; Lucia O. Sampaio; Carl P. Dietrich; Helena B. Nader
A practical fluorescence-based assay method for determination of hyaluronan (HA) was developed. Plates were coated with hyaluronan-binding proteins (HABP) obtained from bovine cartilage and successively incubated with samples containing standard solutions of hyaluronan or serum from normal and cyrrhotic patients, biotin-conjugated HABP, and europium-labeled streptavidin. After release of europium from streptavidin with enhancement solution the final fluorescence is measured in a fluorometer. The method is specific for HA even in the presence of substantial amounts of other glycosaminoglycans (chondroitin, dermatan sulfate, and heparan sulfate, and heparin) or proteins. It is possible to quantify HA between 0.2 and 500.0 microg/L. Analyses of HA concentration in 545 normal subjects and 40 cirrhotic patients gave average values of 14.5 and 542.0 microg/L, respectively. It was also shown that older subjects (> or =51 years old) have more HA (28.0 microg/L) than younger subjects (12.0 to 14.0 microg/L). This new sandwich technique has shown high precision and sensitivity similar to those of a recently described fluorescence-based assay method, being able to measure HA in amounts as small as 0.2 microg/L. In addition, this noncompetitive assay avoids preincubation, consumes less time (<5 h) than the previous competitive fluorescence-based assay (>72 h), and avoids the use of radioactive materials.
Biochemical Journal | 2007
Rafael Bertoni da Silveira; Ana Carolina Martins Wille; Olga Meiri Chaim; Marcia Helena Appel; Dilza Trevisan Silva; Célia Regina C. Franco; Leny Toma; Oldemir C. Mangili; Waldemiro Gremski; Carl P. Dietrich; Helena B. Nader; Silvio Sanches Veiga
Injuries caused by brown spiders (Loxosceles genus) are associated with dermonecrotic lesions with gravitational spreading and systemic manifestations. The venom has a complex composition containing many different toxins, of which metalloproteases have been described in many different species of this genus. These toxins may degrade extracellular matrix constituents acting as a spreading factor. By using a cDNA library from an Loxosceles intermedia venom gland, we cloned and expressed a 900 bp cDNA, which encoded a signal peptide and a propeptide, which corresponded to a 30 kDa metalloprotease, now named LALP (Loxosceles astacin-like protease). Recombinant LALP was refolded and used to produce a polyclonal antiserum, which showed cross-reactivity with a 29 kDa native venom protein. CD analysis provided evidence that the recombinant LALP toxin was folded correctly, was still in a native conformation and had not aggregated. LALP addition to endothelial cell cultures resulted in de-adhesion of the cells, and also in the degradation of fibronectin and fibrinogen (this could be inhibited by the presence of the bivalent chelator 1,10-phenanthroline) and of gelatin in vitro. Sequence comparison (nucleotide and deduced amino acid), phylogenetic analysis and analysis of the functional recombinant toxin revealed that LALP is related in both structure and function to the astacin family of metalloproteases. This suggests that an astacin-like toxin is present in a animal venom secretion and indicates that recombinant LALP will be a useful tool for future structural and functional studies on venom and the astacin family.