Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Helena Cornella is active.

Publication


Featured researches published by Helena Cornella.


Gastroenterology | 2011

Combining Clinical, Pathology, and Gene Expression Data to Predict Recurrence of Hepatocellular Carcinoma

Augusto Villanueva; Yujin Hoshida; Carlo Battiston; Victoria Tovar; Daniela Sia; Clara Alsinet; Helena Cornella; Arthur Liberzon; Masahiro Kobayashi; Swan N. Thung; Jordi Bruix; Philippa Newell; Craig April; Jian Bing Fan; Sasan Roayaie; Vincenzo Mazzaferro; Myron Schwartz; Josep M. Llovet

BACKGROUND & AIMS In approximately 70% of patients with hepatocellular carcinoma (HCC) treated by resection or ablation, disease recurs within 5 years. Although gene expression signatures have been associated with outcome, there is no method to predict recurrence based on combined clinical, pathology, and genomic data (from tumor and cirrhotic tissue). We evaluated gene expression signatures associated with outcome in a large cohort of patients with early stage (Barcelona-Clinic Liver Cancer 0/A), single-nodule HCC and heterogeneity of signatures within tumor tissues. METHODS We assessed 287 HCC patients undergoing resection and tested genome-wide expression platforms using tumor (n = 287) and adjacent nontumor, cirrhotic tissue (n = 226). We evaluated gene expression signatures with reported prognostic ability generated from tumor or cirrhotic tissue in 18 and 4 reports, respectively. In 15 additional patients, we profiled samples from the center and periphery of the tumor, to determine stability of signatures. Data analysis included Cox modeling and random survival forests to identify independent predictors of tumor recurrence. RESULTS Gene expression signatures that were associated with aggressive HCC were clustered, as well as those associated with tumors of progenitor cell origin and those from nontumor, adjacent, cirrhotic tissues. On multivariate analysis, the tumor-associated signature G3-proliferation (hazard ratio [HR], 1.75; P = .003) and an adjacent poor-survival signature (HR, 1.74; P = .004) were independent predictors of HCC recurrence, along with satellites (HR, 1.66; P = .04). Samples from different sites in the same tumor nodule were reproducibly classified. CONCLUSIONS We developed a composite prognostic model for HCC recurrence, based on gene expression patterns in tumor and adjacent tissues. These signatures predict early and overall recurrence in patients with HCC, and complement findings from clinical and pathology analyses.


Gastroenterology | 2013

Integrative Molecular Analysis of Intrahepatic Cholangiocarcinoma Reveals 2 Classes That Have Different Outcomes

Daniela Sia; Yujin Hoshida; Augusto Villanueva; Sasan Roayaie; Joana Ferrer; Barbara Tabak; Judit Peix; Manel Solé; Victoria Tovar; Clara Alsinet; Helena Cornella; Brandy Klotzle; Jian Bing Fan; Christian Cotsoglou; Swan N. Thung; Josep Fuster; Samuel Waxman; Juan–Carlos García–Valdecasas; Jordi Bruix; Myron Schwartz; Rameen Beroukhim; Vincenzo Mazzaferro; Josep M. Llovet

BACKGROUND & AIMS Cholangiocarcinoma, the second most common liver cancer, can be classified as intrahepatic cholangiocarcinoma (ICC) or extrahepatic cholangiocarcinoma. We performed an integrative genomic analysis of ICC samples from a large series of patients. METHODS We performed a gene expression profile, high-density single-nucleotide polymorphism array, and mutation analyses using formalin-fixed ICC samples from 149 patients. Associations with clinicopathologic traits and patient outcomes were examined for 119 cases. Class discovery was based on a non-negative matrix factorization algorithm and significant copy number variations were identified by Genomic Identification of Significant Targets in Cancer (GISTIC) analysis. Gene set enrichment analysis was used to identify signaling pathways activated in specific molecular classes of tumors, and to analyze their genomic overlap with hepatocellular carcinoma (HCC). RESULTS We identified 2 main biological classes of ICC. The inflammation class (38% of ICCs) is characterized by activation of inflammatory signaling pathways, overexpression of cytokines, and STAT3 activation. The proliferation class (62%) is characterized by activation of oncogenic signaling pathways (including RAS, mitogen-activated protein kinase, and MET), DNA amplifications at 11q13.2, deletions at 14q22.1, mutations in KRAS and BRAF, and gene expression signatures previously associated with poor outcomes for patients with HCC. Copy number variation-based clustering was able to refine these molecular groups further. We identified high-level amplifications in 5 regions, including 1p13 (9%) and 11q13.2 (4%), and several focal deletions, such as 9p21.3 (18%) and 14q22.1 (12% in coding regions for the SAV1 tumor suppressor). In a complementary approach, we identified a gene expression signature that was associated with reduced survival times of patients with ICC; this signature was enriched in the proliferation class (P < .001). CONCLUSIONS We used an integrative genomic analysis to identify 2 classes of ICC. The proliferation class has specific copy number alterations, activation of oncogenic pathways, and is associated with worse outcome. Different classes of ICC, based on molecular features, therefore might require different treatment approaches.


Nature | 2014

Mutant IDH inhibits HNF-4α to block hepatocyte differentiation and promote biliary cancer

Supriya K. Saha; Christine A. Parachoniak; Krishna S. Ghanta; Julien Fitamant; Kenneth N. Ross; Mortada S. Najem; Sushma Gurumurthy; Esra A. Akbay; Daniela Sia; Helena Cornella; Oriana Miltiadous; Chad Walesky; Vikram Deshpande; Andrew X. Zhu; Katharine E. Yen; Kimberly Straley; Jeremy Travins; Janeta Popovici-Muller; Camelia Gliser; Cristina R. Ferrone; Udayan Apte; Josep M. Llovet; Kwok-Kin Wong; Sridhar Ramaswamy; Nabeel Bardeesy

Mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 are among the most common genetic alterations in intrahepatic cholangiocarcinoma (IHCC), a deadly liver cancer. Mutant IDH proteins in IHCC and other malignancies acquire an abnormal enzymatic activity allowing them to convert α-ketoglutarate (αKG) to 2-hydroxyglutarate (2HG), which inhibits the activity of multiple αKG-dependent dioxygenases, and results in alterations in cell differentiation, survival, and extracellular matrix maturation. However, the molecular pathways by which IDH mutations lead to tumour formation remain unclear. Here we show that mutant IDH blocks liver progenitor cells from undergoing hepatocyte differentiation through the production of 2HG and suppression of HNF-4α, a master regulator of hepatocyte identity and quiescence. Correspondingly, genetically engineered mouse models expressing mutant IDH in the adult liver show an aberrant response to hepatic injury, characterized by HNF-4α silencing, impaired hepatocyte differentiation, and markedly elevated levels of cell proliferation. Moreover, IDH and Kras mutations, genetic alterations that co-exist in a subset of human IHCCs, cooperate to drive the expansion of liver progenitor cells, development of premalignant biliary lesions, and progression to metastatic IHCC. These studies provide a functional link between IDH mutations, hepatic cell fate, and IHCC pathogenesis, and present a novel genetically engineered mouse model of IDH-driven malignancy.


Clinical Cancer Research | 2010

New strategies in hepatocellular carcinoma: genomic prognostic markers.

Augusto Villanueva; Yujin Hoshida; Sara Toffanin; Anja Lachenmayer; Clara Alsinet; Radoslav Savic; Helena Cornella; Josep M. Llovet

Accurate prognosis prediction in oncology is critical. In patients with hepatocellular carcinoma (HCC), unlike most solid tumors, the coexistence of two life-threatening conditions, cancer and cirrhosis, makes prognostic assessments difficult. Despite the usefulness of clinical staging systems for HCC in routine clinical decision making (e.g., Barcelona-Clinic Liver Cancer algorithm), there is still a need to refine and complement outcome predictions. Recent data suggest the ability of gene signatures from the tumor (e.g., EpCAM signature) and adjacent tissue (e.g., poor-survival signature) to predict outcome in HCC (either recurrence or overall survival), although independent external validation is still required. In addition, novel information is being produced by alternative genomic sources such as microRNA (miRNA; e.g., miR-26a) or epigenomics, areas in which promising preliminary data are thoroughly explored. Prognostic models need to contemplate the impact of liver dysfunction and risk of subsequent de novo tumors in a patient’s life expectancy. The challenge for the future is to precisely depict genomic predictors (e.g., gene signatures, miRNA, or epigenetic biomarkers) at each stage of the disease and their specific influence to determine patient prognosis. Clin Cancer Res; 16(19); 4688–94. ©2010 AACR.


Liver cancer | 2012

Emerging Signaling Pathways in Hepatocellular Carcinoma

Agrin Moeini; Helena Cornella; Augusto Villanueva

Signaling pathways have become a major source of targets for novel therapies in hepatocellular carcinoma (HCC). Survival benefits achieved with sorafenib, a multikinase inhibitor, are unprecedented and underscore the importance of improving our understanding of how signaling networks interact in transformed cells. Numerous signaling modules are de-regulated in HCC, including some related to growth factor signaling (e.g., IGF, EGF, PDGF, FGF, HGF), cell differentiation (WNT, Hedgehog, Notch), and angiogenesis (VEGF). Intracellular mediators such as RAS and AKT/MTOR may also play a role in HCC development and progression. Different molecular mechanisms have been shown to induce aberrant pathway activation. These include point mutations, chromosomal aberrations, and epigenetically driven down-regulation. The use of novel molecular technologies such as next-generation sequencing in HCC research has enabled the identification of novel pathways previously underexplored in the HCC field, such as chromatin remodeling and autophagy. Considering recent failures of molecular therapies in advanced clinical trials (e.g., sunitinib, brivanib), survey of these and other new pathways may provide alternative therapeutic targets.


Hepatology | 2015

DNA methylation-based prognosis and epidrivers in hepatocellular carcinoma

Augusto Villanueva; Anna Portela; Sergi Sayols; Carlo Battiston; Yujin Hoshida; Jesús Méndez-González; Sandrine Imbeaud; Eric Letouzé; Virginia Hernández-Gea; Helena Cornella; Manel Solé; Josep Fuster; Jessica Zucman-Rossi; Vincenzo Mazzaferro; Manel Esteller; Josep M. Llovet

Epigenetic deregulation has emerged as a driver in human malignancies. There is no clear understanding of the epigenetic alterations in hepatocellular carcinoma (HCC) and of the potential role of DNA methylation markers as prognostic biomarkers. Analysis of tumor tissue from 304 patients with HCC treated with surgical resection allowed us to generate a methylation‐based prognostic signature using a training‐validation scheme. Methylome profiling was done with the Illumina HumanMethylation450 array (Illumina, Inc., San Diego, CA), which covers 96% of known cytosine‐phosphate‐guanine (CpG) islands and 485,000 CpG, and transcriptome profiling was performed with Affymetrix Human Genome U219 Plate (Affymetrix, Inc., Santa Clara, CA) and miRNA Chip 2.0. Random survival forests enabled us to generate a methylation signature based on 36 methylation probes. We computed a risk score of mortality for each individual that accurately discriminated patient survival both in the training (221 patients; 47% hepatitis C–related HCC) and validation sets (n = 83; 47% alcohol‐related HCC). This signature correlated with known predictors of poor outcome and retained independent prognostic capacity of survival along with multinodularity and platelet count. The subset of patients identified by this signature was enriched in the molecular subclass of proliferation with progenitor cell features. The study confirmed a high prevalence of genes known to be deregulated by aberrant methylation in HCC (e.g., Ras association [RalGDS/AF‐6] domain family member 1, insulin‐like growth factor 2, and adenomatous polyposis coli) and other solid tumors (e.g., NOTCH3) and describes potential candidate epidrivers (e.g., septin 9 and ephrin B2). Conclusions: A validated signature of 36 DNA methylation markers accurately predicts poor survival in patients with HCC. Patients with this methylation profile harbor messenger RNA–based signatures indicating tumors with progenitor cell features. (Hepatology 2015;61:1945–1956)


Nature Communications | 2015

Massive parallel sequencing uncovers actionable FGFR2–PPHLN1 fusion and ARAF mutations in intrahepatic cholangiocarcinoma

Daniela Sia; Bojan Losic; Agrin Moeini; Laia Cabellos; Ke Hao; Kate Revill; Dennis M. Bonal; Oriana Miltiadous; Zhongyang Zhang; Yujin Hoshida; Helena Cornella; Mireia Castillo-Martin; Yumi Kasai; Sasan Roayaie; Swan N. Thung; Josep Fuster; Myron Schwartz; Samuel Waxman; Carlos Cordon-Cardo; Eric E. Schadt; Vincenzo Mazzaferro; Josep M. Llovet

Intrahepatic cholangiocarcinoma (iCCA) is a fatal bile duct cancer with dismal prognosis and limited therapeutic options. By performing RNA- and exome-sequencing analyses, we report a novel fusion event, FGFR2-PPHLN1 (16%), and damaging mutations in the ARAF oncogene (11%). Here we demonstrate that the chromosomal translocation t(10;12)(q26;q12) leading to FGFR2-PPHLN1 fusion possesses transforming and oncogenic activity, which is successfully inhibited by a selective FGFR2 inhibitor in vitro. Among the ARAF mutations, N217I and G322S lead to activation of the pathway and N217I shows oncogenic potential in vitro. Screening of a cohort of 107 iCCA patients reveals that FGFR2 fusions represent the most recurrent targetable alteration (45%, 17/107), while they are rarely present in other primary liver tumours (0/100 of hepatocellular carcinoma (HCC); 1/21 of mixed iCCA-HCC). Taken together, around 70% of iCCA patients harbour at least one actionable molecular alteration (FGFR2 fusions, IDH1/2, ARAF, KRAS, BRAF and FGF19) that is amenable for therapeutic targeting.


Gastroenterology | 2015

Unique genomic profile of fibrolamellar hepatocellular carcinoma.

Helena Cornella; Clara Alsinet; Sergi Sayols; Zhongyang Zhang; Ke Hao; Laia Cabellos; Yujin Hoshida; Augusto Villanueva; Swan Thung; Stephen C. Ward; Leonardo Rodriguez-Carunchio; Maria Vila-Casadesus; Sandrine Imbeaud; Anja Lachenmayer; Alberto Quaglia; David M. Nagorney; Beatriz Minguez; Flair José Carrilho; Lewis R. Roberts; Samuel Waxman; Vincenzo Mazzaferro; Myron Schwartz; Manel Esteller; Nigel Heaton; Jessica Zucman-Rossi; Josep M. Llovet

BACKGROUND & AIMS Fibrolamellar hepatocellular carcinoma (FLC) is a rare primary hepatic cancer that develops in children and young adults without cirrhosis. Little is known about its pathogenesis, and it can be treated only with surgery. We performed an integrative genomic analysis of a large series of patients with FLC to identify associated genetic factors. METHODS By using 78 clinically annotated FLC samples, we performed whole-transcriptome (n = 58), single-nucleotide polymorphism array (n = 41), and next-generation sequencing (n = 48) analyses; we also assessed the prevalence of the DNAJB1-PRKACA fusion transcript associated with this cancer (n = 73). We performed class discovery using non-negative matrix factorization, and functional annotation using gene-set enrichment analyses, nearest template prediction, ingenuity pathway analyses, and immunohistochemistry. The genomic identification of significant targets in a cancer algorithm was used to identify chromosomal aberrations, MuTect and VarScan2 were used to identify somatic mutations, and the random survival forest was used to determine patient prognoses. Findings were validated in an independent cohort. RESULTS Unsupervised gene expression clustering showed 3 robust molecular classes of tumors: the proliferation class (51% of samples) had altered expression of genes that regulate proliferation and mammalian target of rapamycin signaling activation; the inflammation class (26% of samples) had altered expression of genes that regulate inflammation and cytokine enriched production; and the unannotated class (23% of samples) had a gene expression signature that was not associated previously with liver tumors. Expression of genes that regulate neuroendocrine function, as well as histologic markers of cholangiocytes and hepatocytes, were detected in all 3 classes. FLCs had few copy number variations; the most frequent were focal amplification at 8q24.3 (in 12.5% of samples), and deletions at 19p13 (in 28% of samples) and 22q13.32 (in 25% of samples). The DNAJB1-PRKACA fusion transcript was detected in 79% of samples. FLC samples also contained mutations in cancer-related genes such as BRCA2 (in 4.2% of samples), which are uncommon in liver neoplasms. However, FLCs did not contain mutations most commonly detected in liver cancers. We identified an 8-gene signature that predicted survival of patients with FLC. CONCLUSIONS In a genomic analysis of 78 FLC samples, we identified 3 classes based on gene expression profiles. FLCs contain mutations and chromosomal aberrations not previously associated with liver cancer, and almost 80% contain the DNAJB1-PRKACA fusion transcript. By using this information, we identified a gene signature that is associated with patient survival time.


Alcoholism: Clinical and Experimental Research | 2011

Molecular pathogenesis of hepatocellular carcinoma.

Helena Cornella; Clara Alsinet; Augusto Villanueva

Hepatocellular carcinoma (HCC) is one of the major causes of death among cirrhotic patients, being viral hepatitis and alcohol abuse, the main risk factors for its development. The introduction of highly sophisticated genomic technologies has spurred extensive research on the molecular pathogenesis of this devastating disease. Several signaling cascades have been consistently found dysregulated in HCC (e.g., WNT-β-catenin, PI3K/AKT/MTOR, RAS/MAPK, IGF, HGF/MET, VEGF, EGFR, and PDGF). In addition, there have been numerous molecular classifications proposed for this disease, what provides an additional hint about its genomic complexity. The importance of knowing the molecular drivers of HCC is underscored by the positive results of a molecular targeted agent, sorafenib, able to improve survival in patients with advanced disease. This review will briefly outline key concepts in alcohol-related hepatocarcinogenesis, and provide some insight regarding current trends in translating HCC genomics into clinical management of the disease.


Gut | 2017

Tumour initiating cells and IGF/FGF signalling contribute to sorafenib resistance in hepatocellular carcinoma

Tovar; Helena Cornella; Agrin Moeini; Vidal S; Yujin Hoshida; Sia D; Judit Peix; Laia Cabellos; Clara Alsinet; Sara Torrecilla; Iris Martinez-Quetglas; Lozano Jj; Desbois-Mouthon C; Manel Solé; J. Domingo-Domenech; Augusto Villanueva; Josep M. Llovet

Objective Sorafenib is effective in hepatocellular carcinoma (HCC), but patients ultimately present disease progression. Molecular mechanisms underlying acquired resistance are still unknown. Herein, we characterise the role of tumour-initiating cells (T-ICs) and signalling pathways involved in sorafenib resistance. Design HCC xenograft mice treated with sorafenib (n=22) were explored for responsiveness (n=5) and acquired resistance (n=17). Mechanism of acquired resistance were assessed by: (1) role of T-ICs by in vitro sphere formation and in vivo tumourigenesis assays using NOD/SCID mice, (2) activation of alternative signalling pathways and (3) efficacy of anti-FGF and anti-IGF drugs in experimental models. Gene expression (microarray, quantitative real-time PCR (qRT-PCR)) and protein analyses (immunohistochemistry, western blot) were conducted. A novel gene signature of sorafenib resistance was generated and tested in two independent cohorts. Results Sorafenib-acquired resistant tumours showed significant enrichment of T-ICs (164 cells needed to create a tumour) versus sorafenib-sensitive tumours (13 400 cells) and non-treated tumours (1292 cells), p<0.001. Tumours with sorafenib-acquired resistance were enriched with insulin-like growth factor (IGF) and fibroblast growth factor (FGF) signalling cascades (false discovery rate (FDR)<0.05). In vitro, cells derived from sorafenib-acquired resistant tumours and two sorafenib-resistant HCC cell lines were responsive to IGF or FGF inhibition. In vivo, FGF blockade delayed tumour growth and improved survival in sorafenib-resistant tumours. A sorafenib-resistance 175 gene signature was characterised by enrichment of progenitor cell features, aggressive tumorous traits and predicted poor survival in two cohorts (n=442 patients with HCC). Conclusions Acquired resistance to sorafenib is driven by T-ICs with enrichment of progenitor markers and activation of IGF and FGF signalling. Inhibition of these pathways would benefit a subset of patients after sorafenib progression.

Collaboration


Dive into the Helena Cornella's collaboration.

Top Co-Authors

Avatar

Josep M. Llovet

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Augusto Villanueva

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Daniela Sia

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Yujin Hoshida

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Myron Schwartz

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Laia Cabellos

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Agrin Moeini

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Ke Hao

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Sara Toffanin

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge