Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Helena Freitas is active.

Publication


Featured researches published by Helena Freitas.


Biotechnology Advances | 2011

Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils

Ying Ma; Manoj Prasad; Mani Rajkumar; Helena Freitas

Technogenic activities (industrial-plastic, textiles, microelectronics, wood preservatives; mining-mine refuse, tailings, smelting; agrochemicals-chemical fertilizers, farm yard manure, pesticides; aerosols-pyrometallurgical and automobile exhausts; biosolids-sewage sludge, domestic waste; fly ash-coal combustion products) are the primary sources of heavy metal contamination and pollution in the environment in addition to geogenic sources. During the last two decades, bioremediation has emerged as a potential tool to clean up the metal-contaminated/polluted environment. Exclusively derived processes by plants alone (phytoremediation) are time-consuming. Further, high levels of pollutants pose toxicity to the remediating plants. This situation could be ameliorated and accelerated by exploring the partnership of plant-microbe, which would improve the plant growth by facilitating the sequestration of toxic heavy metals. Plants can bioconcentrate (phytoextraction) as well as bioimmobilize or inactivate (phytostabilization) toxic heavy metals through in situ rhizospheric processes. The mobility and bioavailability of heavy metal in the soil, particularly at the rhizosphere where root uptake or exclusion takes place, are critical factors that affect phytoextraction and phytostabilization. Developing new methods for either enhancing (phytoextraction) or reducing the bioavailability of metal contaminants in the rhizosphere (phytostabilization) as well as improving plant establishment, growth, and health could significantly speed up the process of bioremediation techniques. In this review, we have highlighted the role of plant growth promoting rhizo- and/or endophytic bacteria in accelerating phytoremediation derived benefits in extensive tables and elaborate schematic sketches.


Ecological Monographs | 2005

Ecosystem effects of biodiversity manipulations in European grasslands.

E. M. Spehn; Andy Hector; Jasmin Joshi; Michael Scherer-Lorenzen; Bernhard Schmid; E. Bazeley-White; Carl Beierkuhnlein; Maria C. Caldeira; Matthias Diemer; Panayiotis G. Dimitrakopoulos; John A Finn; Helena Freitas; Paul S. Giller; J. Good; R. Harris; Peter Högberg; Kerstin Huss-Danell; Ari Jumpponen; Julia Koricheva; P. W. Leadley; Michel Loreau; A. Minns; C. P. H. Mulder; G. O'Donovan; S. J. Otway; Cecilia Palmborg; J. S. Pereira; A. B. Pfisterer; Alexandra Prinz; David Read

We present a multisite analysis of the relationship between plant diversity and ecosystem functioning within the European BIODEPTH network of plant-diversity manipulation experiments. We report results of the analysis of 11 variables addressing several aspects of key ecosystem processes like biomass production, resource use (space, light, and nitrogen), and decomposition, measured across three years in plots of varying plant species richness at eight different European grassland field sites. Differences among sites explained substantial and significant amounts of the variation of most of the ecosystem processes examined. However, against this background of geographic variation, all the aspects of plant diversity and composition we examined (i.e., both numbers and types of species and functional groups) produced significant, mostly positive impacts on ecosystem processes. Analyses using the additive partitioning method revealed that complementarity effects (greater net yields than predicted from monocultures due to resource partitioning, positive interactions, etc.) were stronger and more consistent than selection effects (the covariance between monoculture yield and change in yield in mixtures) caused by dominance of species with particular traits. In general, communities with a higher diversity of species and functional groups were more productive and utilized resources more completely by intercepting more light, taking up more nitrogen, and occupying more of the available space. Diversity had significant effects through both increased vegetation cover and greater nitrogen retention by plants when this resource was more abundant through N2 fixation by legumes. However, additional positive diversity effects remained even after controlling for differences in vegetation cover and for the presence of legumes in communities. Diversity effects were stronger on above- than belowground processes. In particular, clear diversity effects on decomposition were only observed at one of the eight sites. The ecosystem effects of plant diversity also varied between sites and years. In general, diversity effects were lowest in the first year and stronger later in the experiment, indicating that they were not transitional due to community establishment. These analyses of our complete ecosystem process data set largely reinforce our previous results, and those from comparable biodiversity experiments, and extend the generality of diversity–ecosystem functioning relationships to multiple sites, years, and processes.


Trends in Biotechnology | 2010

Potential of siderophore-producing bacteria for improving heavy metal phytoextraction

Mani Rajkumar; Noriharu Ae; Manoj Prasad; Helena Freitas

Phytoremediation holds promise for in situ treatment of heavy metal contaminated soils. Recently, the benefits of combining siderophore-producing bacteria (SPB) with plants for metal removal from contaminated soils have been demonstrated. Metal-resistant SPB play an important role in the successful survival and growth of plants in contaminated soils by alleviating the metal toxicity and supplying the plant with nutrients, particularly iron. Furthermore, bacterial siderophores are able to bind metals other than iron and thus enhance their bioavailability in the rhizosphere of plants. Overall, an increase in plant growth and metal uptake will further enhance the effectiveness of phytoremediation processes. Here, we highlight the diversity and ecology of metal resistant SPB and discuss their potential role in phytoremediation of heavy metals.


Chemosphere | 2009

Endophytic bacteria and their potential to enhance heavy metal phytoextraction

Mani Rajkumar; Noriharu Ae; Helena Freitas

Pollution of soils with heavy metals is becoming one of the most severe environmental and human health hazards. Due to its widespread contamination finding innovative ways to clean metal pollutant has become a priority in the remediation field. Phytoremediation, the use of plants for the restoration of environments contaminated with pollutants is a relatively new technology that is more benign than current engineering solutions to treat contaminated sites. Recently, the benefits of combining endophytic bacteria with plants for increased remediation of pollutants have been successfully tried for toxic metal removal from contaminated soils. Endophytic bacteria reside within plant hosts without causing disease symptoms. Further, the metal resistant endophytes are reported to be present in various hyperaccumulator plants growing on heavy metal contaminated soils and play an important role in successful survival and growth of plants. Moreover, the metal resistant endophytes are reported to promote plant growth by various mechanisms such as nitrogen fixation, solubilization of minerals, production of phytohormones, siderophores, utilization of 1-aminocyclopropane-1-carboxylic acid as a sole N source and transformation of nutrient elements. In this review we highlight the diversity and plant growth promoting features of metal resistant endophytic bacteria and discuss their potential in phytoextraction of heavy metals from contaminated soils.


Ecology | 2009

Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe

Claire Fortunel; Eric Garnier; Richard Joffre; Elena Kazakou; Helen Quested; Karl Grigulis; Sandra Lavorel; Pauline Ansquer; Helena Castro; Pablo Cruz; Jiří Doležal; Ove Eriksson; Helena Freitas; Carly Golodets; Claire Jouany; Jaime Kigel; Michael Kleyer; Veiko Lehsten; Jan Lepš; Tonia Meier; Robin J. Pakeman; Maria Papadimitriou; Vasilios P. Papanastasis; Fabien Quétier; Matt Robson; Marcelo Sternberg; Jean-Pierre Theau; Aurélie Thébault; Maria Zarovali

Land use and climate changes induce shifts in plant functional diversity and community structure, thereby modifying ecosystem processes. This is particularly true for litter decomposition, an essential process in the biogeochemical cycles of carbon and nutrients. In this study, we asked whether changes in functional traits of living leaves in response to changes in land use and climate were related to rates of litter potential decomposition, hereafter denoted litter decomposability, across a range of 10 contrasting sites. To disentangle the different control factors on litter decomposition, we conducted a microcosm experiment to determine the decomposability under standard conditions of litters collected in herbaceous communities from Europe and Israel. We tested how environmental factors (disturbance and climate) affected functional traits of living leaves and how these traits then modified litter quality and subsequent litter decomposability. Litter decomposability appeared proximately linked to initial litter quality, with particularly clear negative correlations with lignin-dependent indices (litter lignin concentr tion, lignin:nitrogen ratio, and fiber component). Litter quality was directly related to community-weighted mean traits. Lignin-dependent indices of litter quality were positively correlated with community-weighted mean leaf dry matter content (LDMC), and negatively correlated with community-weighted mean leaf nitrogen concentration (LNC). Consequently, litter decomposability was correlated negatively with community-weighted mean LDMC, and positively with community-weighted mean LNC. Environmental factors (disturbance and climate) influenced community-weighted mean traits. Plant communities experiencing less frequent or less intense disturbance exhibited higher community-weighted mean LDMC, and therefore higher litter lignin content and slower litter decomposability. LDMC therefore appears as a powerful marker of both changes in land use and of the pace of nutrient cycling across 10 contrasting sites.


Chemosphere | 2008

Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals

Mani Rajkumar; Helena Freitas

The metal resistant-plant growth-promoting bacterial (PGPB) strains PsM6 and PjM15 isolated from a serpentine soil were characterized as Pseudomonas sp. and Pseudomonas jessenii, respectively, on the basis of their morphological, physiological, biochemical characteristics and 16S rDNA sequences. Assessment of plant growth-promoting parameters revealed the intrinsic ability of the strains for the utilization of 1-aminocyclopropane-1-carboxylic acid as the sole N source, solubilization of insoluble phosphate and production of indole-3-acetic acid (IAA). Further, a pot experiment was conducted to elucidate the effects of inoculating metal resistant PGPB on the plant growth and the uptake of Ni, Cu and Zn by Ricinus communis. Inoculation of Pseudomonas sp. PsM6 or P. jessenii PjM15 increased the shoot and root biomass of R. communis grown in non-contaminated and contaminated soil. However, the maximum biomass was observed in the plants inoculated with strain PjM15. This effect can be attributed to the solubilization of phosphate and production of IAA. Inoculation of Pseudomonas sp. PsM6 and PjM15 did not greatly alter the organ metal concentrations except Zn which concentration was higher in root, stem and leaf of inoculated plants. The results of metal extraction with PGPB strains showed that PsM6 was more efficient at solubilizing Zn than PjM15, and that PjM15 was better at solubilising Ni and Cu than PsM6. Owing to its wide action spectrum, the metal resistant PGPB could serve as an effective metal sequestering and growth-promoting bioinoculant for plants in metal-stressed soil. The present study has provided a new insight into the phytoremediation of metal-contaminated soil.


Environment International | 2004

Plant community tolerant to trace elements growing on the degraded soils of São Domingos mine in the south east of Portugal: environmental implications

Helena Freitas; Manoj Prasad; João Pratas

The selection of trace element tolerant species is a key factor to the success of remediation of degraded mine soils. Mining activities generate a large amount of waste rocks and tailings, which get deposited at the surface. The degraded soils, the waste rocks and tailings are often very unstable and will become sources of pollution. The direct effects will be the loss of cultivated land, forest or grazing land, and the overall loss of production. The indirect effects will include air and water pollution and siltation of rivers. These will eventually lead to the loss of biodiversity, amenity and economic wealth. Restoration of a vegetation cover can fulfil the objectives of stabilization, pollution control, visual improvement and removal of threats to human beings. Thus, remediation of mine spoils/tailings and biogeochemical prospecting would rely on the appropriate selection of plant species. Plant community responds differently on their ability to uptake or exclude a variety of metals. In this work, plant species were sampled from all populations established in an abandoned copper mine of São Domingos, SE Portugal. Plants belonging to 24 species, 16 genera and 13 families were collected from the degraded copper mine of São Domingos. Plant samples were analysed for total Ag, As, Cu, Ni, Pb, and Zn. The highest concentrations of metals in soils dry matter were 11217.5 mg Pb kg(-1), 1829 mg Cu kg(-1), 1291 mg As kg(-1), 713.7 mg Zn kg(-1), 84.6 mg Cr kg(-1), 54.3 mg Co kg(-1), 52.9 mg Ni kg(-1) and 16.6 mg Ag kg(-1). With respect to plants, the higher concentrations of Pb and As were recorded in the semi-aquatic species Juncus conglomeratus with 84.8 and 23.5 mg kg(-1) dry weight (DW), Juncus efusus with 22.4 and 8.5 mg kg(-1) DW, and Scirpus holoschoenus with 51.7 and 8.0 mg kg(-1) DW, respectively. Thymus mastichina also showed high content of As in the aboveground parts, 13.6 mg kg(-1) DW. Overall, the results indicate accumulation of various metals by different plant species, with some of these metals being partitioned to the shoots. Environmental implications of these observations are discussed.


Journal of Environmental Management | 2009

Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea

Ying Ma; Mani Rajkumar; Helena Freitas

In this study, a copper-resistant plant growth promoting bacterial (PGPB) strain Ax10 was isolated from a Cu mine soil to assess its plant growth promotion and copper uptake in Brassica juncea. The strain Ax10 tolerated concentrations up to 600 mg CuL(-1) on a Luria-Bertani (LB) agar medium and utilized 1-aminocyclopropane-1-carboxylic acid (ACC) as a sole N source in DF salts minimal medium. The strain Ax10 was characterized as Achromobacter xylosoxidans based on its 16S rDNA sequence homology (99%). The bacterium A. xylosoxidans Ax10 has also exhibited the capability of producing indole acetic acid (IAA) (6.4 microg mL(-1)), and solubilizing inorganic phosphate (89.6 microg mL(-1)) in specific culture media. In pot experiments, inoculation of A. xylosoxidans Ax10 significantly increased the root length, shoot length, fresh weight and dry weight of B. juncea plants compared to the control. This effect can be attributed to the utilization of ACC, production of IAA and solubilization of phosphate. Furthermore, A. xylosoxidans Ax10 inoculation significantly improved Cu uptake by B. juncea. Owing to its wide action spectrum, the Cu-resistant A. xylosoxidans Ax10 could serve as an effective metal sequestering and growth promoting bioinoculant for plants in Cu-stressed soil. The present study has provided a new insight into the phytoremediation of Cu-contaminated soil.


Global Change Biology | 2009

Eutrophication and macroalgal blooms in temperate and tropical coastal waters: nutrient enrichment experiments with Ulva spp.

Mirta Teichberg; Sophia E. Fox; Ylva S. Olsen; Ivan Valiela; Paulina Martinetto; Oscar Iribarne; Elizabeti Yuriko Muto; Mônica Angélica Varella Petti; Thais Navajas Corbisier; Martín F. Soto-Jiménez; F. Páez-Osuna; Helena Freitas; Andreina Zitelli; Massimo Cardinaletti; Davide Tagliapietra

Receiving coastal waters and estuaries are among the most nutrient-enriched environments on earth, and one of the symptoms of the resulting eutrophication is the proliferation of opportunistic, fast-growing marine seaweeds. Here, we used a widespread macroalga often involved in blooms, Ulva spp., to investigate how supply of nitrogen (N) and phosphorus (P), the two main potential growth-limiting nutrients, influence macroalgal growth in temperate and tropical coastal waters ranging from low- to high-nutrient supplies. We carried out N and P enrichment field experiments on Ulva spp. in seven coastal systems, with one of these systems represented by three different subestuaries, for a total of nine sites. We showed that rate of growth of Ulva spp. was directly correlated to annual dissolved inorganic nitrogen (DIN) concentrations, where growth increased with increasing DIN concentration. Internal N pools of macroalgal fronds were also linked to increased DIN supply, and algal growth rates were tightly coupled to these internal N pools. The increases in DIN appeared to be related to greater inputs of wastewater to these coastal waters as indicated by high δ15N signatures of the algae as DIN increased. N and P enrichment experiments showed that rate of macroalgal growth was controlled by supply of DIN where ambient DIN concentrations were low, and by P where DIN concentrations were higher, regardless of latitude or geographic setting. These results suggest that understanding the basis for macroalgal blooms, and management of these harmful phenomena, will require information as to nutrient sources, and actions to reduce supply of N and P in coastal waters concerned.


Journal of Hazardous Materials | 2009

Improvement of plant growth and nickel uptake by nickel resistant-plant-growth promoting bacteria

Ying Ma; Mani Rajkumar; Helena Freitas

In this study, among a collection of Ni-resistant bacterial strains isolated from the rhizosphere of Alyssum serpyllifolium and Phleum phleoides grown on serpentine soil, five plant growth-promoting bacteria (PGPB) were selected based on their ability to utilize 1-aminocyclopropane-1-carboxylate (ACC) as the sole N source and promote seedling growth. All of the strains tested positive for indole-3-acetic acid (IAA) production and phosphate solubilization. In addition, four of the strains exhibited significant levels of siderophores production. Further, the efficiency of PGPB in enhancing Ni solubilization in soils was analyzed. Compared with control treatment, inoculation of PGPB strains significantly increased the concentrations of bioavailable Ni. Furthermore, a pot experiment was conducted to elucidate the effects of inoculating Ni-resistant PGPB on the plant growth and the uptake of Ni by Brassica juncea and B. oxyrrhina in soil contaminated with 450 mg kg(-1) Ni. Psychrobacter sp. SRA2 significantly increased the fresh (351%) and dry biomass (285%) of the B. juncea test plants (p<0.05), whereas Psychrobacter sp. SRA1 and Bacillus cereus SRA10 significantly increased the accumulation of Ni in the root and shoot tissues of B. juncea compared with non-inoculated controls. This result indicates that the strains SRA1 and SRA10 facilitated the release of Ni from the non-soluble phases in the soil, thus enhancing the availability of Ni to plants. A significant increase, greater than that of the control, was also noted for growth parameters of the B. oxyrrhina test plants when the seeds were treated with strain SRA2. This effect can be attributed to the utilization of ACC, solubilization of phosphate and production of IAA. The results of the study revealed that the inoculation of Ni mobilizing strains Psychrobacter sp. SRA1 and B. cereus SRA10 increases the efficiency of phytoextraction directly by enhancing the metal accumulation in plant tissues and the efficient PGPB, Psychrobacter sp. SRA2 increases indirectly by promoting the growth of B. juncea and B. oxyrrhina.

Collaboration


Dive into the Helena Freitas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mani Rajkumar

Central University of Tamil Nadu

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying Ma

University of Coimbra

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manoj Prasad

University of Hyderabad

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge