Helena Grip
Umeå University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Helena Grip.
Journal of Biomechanics | 2008
Helena Grip; Gunnevi Sundelin; Björn Gerdle; J. Stefan Karlsson
The helical axis model can be used to describe translation and rotation of spine segments. The aim of this study was to investigate the cervical helical axis and its center of rotation during fast head movements (side rotation and flexion/extension) and ball catching in patients with non-specific neck pain or pain due to whiplash injury as compared with matched controls. The aim was also to investigate correlations with neck pain intensity. A finite helical axis model with a time-varying window was used. The intersection point of the axis during different movement conditions was calculated. A repeated-measures ANOVA model was used to investigate the cervical helical axis and its rotation center for consecutive levels of 15 degrees during head movement. Irregularities in axis movement were derived using a zero-crossing approach. In addition, head, arm and upper body range of motion and velocity were observed. A general increase of axis irregularity that correlated to pain intensity was observed in the whiplash group. The rotation center was superiorly displaced in the non-specific neck pain group during side rotation, with the same tendency for the whiplash group. During ball catching, an anterior displacement (and a tendency to an inferior displacement) of the center of rotation and slower and more restricted upper body movements implied a changed movement strategy in neck pain patients, possibly as an attempt to stabilize the cervical spine during head movement.
BMC Musculoskeletal Disorders | 2010
Ulrik Röijezon; Mats Djupsjöbacka; Martin Björklund; Charlotte Häger-Ross; Helena Grip; Dario G. Liebermann
BackgroundAssessment of sensorimotor function is useful for classification and treatment evaluation of neck pain disorders. Several studies have investigated various aspects of cervical motor functions. Most of these have involved slow or self-paced movements, while few have investigated fast cervical movements. Moreover, the reliability of assessment of fast cervical axial rotation has, to our knowledge, not been evaluated before.MethodsCervical kinematics was assessed during fast axial head rotations in 118 women with chronic nonspecific neck pain (NS) and compared to 49 healthy controls (CON). The relationship between cervical kinematics and symptoms, self-rated functioning and fear of movement was evaluated in the NS group. A sub-sample of 16 NS and 16 CON was re-tested after one week to assess the reliability of kinematic variables. Six cervical kinematic variables were calculated: peak speed, range of movement, conjunct movements and three variables related to the shape of the speed profile.ResultsTogether, peak speed and conjunct movements had a sensitivity of 76% and a specificity of 78% in discriminating between NS and CON, of which the major part could be attributed to peak speed (NS: 226 ± 88 °/s and CON: 348 ± 92 °/s, p < 0.01). Peak speed was slower in NS compared to healthy controls and even slower in NS with comorbidity of low-back pain. Associations were found between reduced peak speed and self-rated difficulties with running, performing head movements, car driving, sleeping and pain. Peak speed showed reasonably high reliability, while the reliability for conjunct movements was poor.ConclusionsPeak speed of fast cervical axial rotations is reduced in people with chronic neck pain, and even further reduced in subjects with concomitant low back pain. Fast cervical rotation test seems to be a reliable and valid tool for assessment of neck pain disorders on group level, while a rather large between subject variation and overlap between groups calls for caution in the interpretation of individual assessments.
international conference of the ieee engineering in medicine and biology society | 2003
Fredrik Öhberg; Helena Grip; Urban Wiklund; Ylva Sterner; J.S. Karlsson; Björn Gerdle
This paper presents an assessment tool for objective neck movement analysis of subjects suffering from chronic whiplash-associated disorders (WAD). Three-dimensional (3-D) motion data is collected by a commercially available motion analysis system. Head rotation, defined in this paper as the rotation angle around the instantaneous helical axis (IHA), is used for extracting a number of variables (e.g., angular velocity and range, symmetry of motion). Statistically significant differences were found between controls and subjects with chronic WAD in a number of variables.
Journal of Clinical Monitoring and Computing | 2009
Helena Grip; Gwendolen Jull; Julia Treleaven
Objective. Describe reproducibility of a measurement method to investigate deficits in eye-head co-ordination. Methods. Combined recordings of head and eye rotation using wireless motion sensors and electro-oculography (EOG) were used as an initial step towards a method to quantify eye-head co-ordination deficits. Head rotation to the side during gaze fixation and sequential head and eye movements were studied on 20 asymptomatic control subjects and six subjects with chronic whiplash disorders. All included whiplash subjects reported eye disturbances according to a vision symptom questionnaire. Results. The trial-to-trial reproducibility was moderate to high for 24 of 28 variables (Intraclass Correlation Coefficient 0.44 to 0.87). Velocity gain (ratio of eye and head velocities) was on average close to unity in both groups. Head stability was high in control subjects, while three of six whiplash subjects demonstrated head instability during eye movement. Whiplash subjects also demonstrated a decreased range of head movement during gaze fixation and lower head velocities as compared with the asymptomatics. Conclusions. The method of combined head and eye motion appears to give accurate, repeatable measurements. Case studies of whiplash subjects indicated deficits in head eye co-ordination. The method could be useful in further clinical research into eye and head movement in those with neck disorders.
Journal of Biomechanics | 2013
Helena Grip; Charlotte Häger
There is a lack of measures that quantify functional knee stability, which is of particular relevance in knee rehabilitation. Therefore, the aim of this study was to investigate the usefulness of knee finite helical axis (FHA) variables in 33 healthy subjects during two different functional tasks; One leg side hop (SH) and Two Leg Squat (TLS), and to investigate correlations of these variables with laxity. Laxity was assessed with a KT-1000 arthrometer and the Beighton Hypermobility Score. Movements were registered with an optical motion capture system. Knee rotation and translation were defined by a six degree of freedom segment model. FHA was calculated for finite steps of 20° knee flexion, based on error simulations. We computed the FHA inclination, the translation along FHA and an FHA Direction Index quantifying directional changes. All variables were repeatable (average ICCs ~0.97 during TLS and ~0.83 during SH). The lower functional knee stability in SH was reflected by a significantly higher FHA Direction Index and a larger medio-lateral FHA inclination compared to those in TLS. The superior-inferior inclination was smaller during Landing in SH compared to Take-Off and TLS. Translation along FHA was generally small as expected in healthy subjects. Beighton Hypermobility Score and KT-1000 values had weak but significant correlations with FHA Direction Index and FHA translation, which show that laxity influences the functional knee stability. We conclude that FHA measures were sensitive enough to discriminate between SH and TLS. The next step is to investigate the usability of these measures in subjects with knee injury.
Aviation, Space, and Environmental Medicine | 2008
Helge Brändström; Helena Grip; Per Hallberg; Christer Grönlund; Karl-Axel Ängquist; Gordon G. Giesbrecht
INTRODUCTION The ability of fingers to rapidly rewarm following cold exposure is a possible indicator of cold injury protection. We categorized the post-cooling hand-rewarming responses of men before and after participation in 15 mo of military training in a cold environment in northern Sweden to determine: 1) if the initial rewarming category was related to the occurrence of local cold injury during training; and 2) if cold training affected subsequent hand-rewarming responses. METHODS Immersion of the dominant hand in 10 degrees C water for 10 min was performed pre-training on 77 men. Of those, 45 were available for successful post-training retests. Infrared thermography monitored the dorsal hand during 30 min of recovery. Rewarming was categorized as normal, moderate, or slow based on mean fingertip temperature at the end of 30 min of recovery (TFinger,30) and the percentage of time that fingertips were vasodilated (%VD). RESULTS Cold injury occurrence during training was disproportionately higher in the slow rewarmers (four of the five injuries). Post-training, baseline fingertip temperatures and cold recovery variables increased significantly in moderate and slow rewarmers: TFinger30 increased from 21.9 +/- 4 to 30.4 +/- 6 degrees C (Moderate), and from 17.4 +/- 0 to 22.3 +/- 7 degrees C (Slow); %VD increased from 27.5 +/- 16 to 65.9 +/- 34% (Moderate), and from 0.7 +/- 2 to 31.7 +/- 44% (Slow). CONCLUSIONS Results of the cold recovery test were related to the occurrence of local cold injury during long-term cold-weather training. Cold training itself improved baseline and cold recovery in moderate and slow rewarmers.
Developmental Neurorehabilitation | 2014
Marlene Sandlund; Erik Domellöf; Helena Grip; Louise Rönnqvist; Charlotte Häger
Abstract Objective: The main aim of this study was to evaluate the quality of goal-directed arm movements in 15 children with cerebral palsy (CP) following four weeks of home-based training with motion interactive video games. A further aim was to investigate the applicability and characteristics of kinematic parameters in a virtual context in comparison to a physical context. Method: Kinematics and kinetics were captured while the children performed arm movements directed towards both virtual and physical targets. Results: The children’s movement precision improved, their centre of pressure paths decreased, as did the variability in maximal shoulder angles when reaching for virtual objects. Transfer to a situation with physical targets was mainly indicated by increased movement smoothness. Conclusion: Training with motion interactive games seems to improve arm motor control in children with CP. The results highlight the importance of considering both the context and the task itself when investigating kinematic parameters.
international conference of the ieee engineering in medicine and biology society | 2003
Helena Grip; Fredrik Öhberg; Urban Wiklund; Ylva Sterner; J.S. Karlsson; Björn Gerdle
This paper presents a new method for classification of neck movement patterns related to whiplash-associated disorders (WAD) using a resilient backpropagation neural network (BPNN). WAD are a common diagnosis after neck trauma, typically caused by rear-end car accidents. Since physical injuries seldom are found with present imaging techniques, the diagnosis can be difficult to make. The active range of the neck is often visually inspected in patients with neck pain, but this is a subjective measure, and a more objective decision support system, that gives a reliable and more detailed analysis of neck movement pattern, is needed. The objective of this study was to evaluate the predictive ability of a BPNN, using neck movement variables as input. Three-dimensional (3-D) neck movement data from 59 subjects with WAD and 56 control subjects were collected with a ProReflex system. Rotation angle and angle velocity were calculated using the instantaneous helical axis method and motion variables were extracted. A principal component analysis was performed in order to reduce data and improve the BPNN performance. BPNNs with six hidden nodes had a predictivity of 0.89, a sensitivity of 0.90 and a specificity of 0.88, which are very promising results. This shows that neck movement analysis combined with a neural network could build the basis of a decision support system for classifying suspected WAD, even though further evaluation of the method is needed.
Scandinavian Journal of Medicine & Science in Sports | 2015
Eva Tengman; Helena Grip; Ann-Katrin Stensdotter; Charlotte Häger
Reduced dynamic knee stability, often evaluated with one‐leg hops (OLHs), is reported after anterior cruciate ligament (ACL) injury. This may lead to long‐standing altered movement patterns, which are less investigated. 3D kinematics during OLH were explored in 70 persons 23 ± 2 years after ACL injury; 33 were treated with physiotherapy in combination with ACL reconstruction (ACLR) and 37 with physiotherapy alone (ACLPT). Comparisons were made to 33 matched controls. We analyzed (a) maximal knee joint angles and range of motion (flexion, abduction, rotation); (b) medio‐lateral position of the center of mass (COM) in relation to knee and ankle joint centers, during take‐off and landing phases. Unlike controls, ACL‐injured displayed leg asymmetries: less knee flexion and less internal rotation at take‐off and landing and more lateral COM related to knee and ankle joint of the injured leg at landing. Compared to controls, ACLR had larger external rotation of the injured leg at landing. ACLPT showed less knee flexion and larger external rotation at take‐off and landing, and larger knee abduction at Landing. COM was more medial in relation to the knee at take‐off and less laterally placed relative to the ankle at landing. ACL injury results in long‐term kinematic alterations during OLH, which are less evident for ACLR.
Measurement Science and Technology | 2013
Fredrik Öhberg; Ronnie Lundström; Helena Grip
For all segments and tests, a modified Kalman filter and a quasi-static sensor fusion algorithm were equally accurate (precision and accuracy ∼2‐3 ◦ ) compared to normalized least mean squares filtering, recursive least-squares filtering and standard Kalman filtering. The aims were to: (1) compare adaptive filtering techniques used for sensor fusion and (2) evaluate the precision and accuracy for a chosen adaptive filter. Motion sensors (based on inertial measurement units) are limited by accumulative integration errors arising from sensor bias. This drift can partly be handled with adaptive filtering techniques. To advance the measurement technique in this area, a new modified Kalman filter is developed. Differences in accuracy were observed during different tests especially drift in the internal/external rotation angle. This drift can be minimized if the sensors include magnetometers.