Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Helena I. Boshoff is active.

Publication


Featured researches published by Helena I. Boshoff.


Nature Reviews Microbiology | 2009

The spectrum of latent tuberculosis: rethinking the biology and intervention strategies

Clifton E. Barry; Helena I. Boshoff; Véronique Dartois; Thomas Dick; Sabine Ehrt; JoAnne L. Flynn; Dirk Schnappinger; Robert J. Wilkinson; Douglas B. Young

Immunological tests provide evidence of latent tuberculosis in one third of the global population, which corresponds to more than two billion individuals. Latent tuberculosis is defined by the absence of clinical symptoms but carries a risk of subsequent progression to clinical disease, particularly in the context of co-infection with HIV. In this Review we discuss the biology of latent tuberculosis as part of a broad range of responses that occur following infection with Mycobacterium tuberculosis, which result in the formation of physiologically distinct granulomatous lesions that provide microenvironments with differential ability to support or suppress the persistence of viable bacteria. We then show how this model can be used to develop a rational programme to discover effective drugs for the eradication of M. tuberculosis infection.


Science | 2008

PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release.

Ramandeep Singh; Ujjini H. Manjunatha; Helena I. Boshoff; Young Hwan Ha; Pornwaratt Niyomrattanakit; Richard Ledwidge; Cynthia S. Dowd; Ill Young Lee; Pilho Kim; Liang Zhang; Sunhee Kang; Thomas H. Keller; Jan Jiricek; Clifton E. Barry

Bicyclic nitroimidazoles, including PA-824, are exciting candidates for the treatment of tuberculosis. These prodrugs require intracellular activation for their biological function. We found that Rv3547 is a deazaflavin-dependent nitroreductase (Ddn) that converts PA-824 into three primary metabolites; the major one is the corresponding des-nitroimidazole (des-nitro). When derivatives of PA-824 were used, the amount of des-nitro metabolite formed was highly correlated with anaerobic killing of Mycobacterium tuberculosis (Mtb). Des-nitro metabolite formation generated reactive nitrogen species, including nitric oxide (NO), which are the major effectors of the anaerobic activity of these compounds. Furthermore, NO scavengers protected the bacilli from the lethal effects of the drug. Thus, these compounds may act as intracellular NO donors and could augment a killing mechanism intrinsic to the innate immune system.


Nature Reviews Microbiology | 2005

Tuberculosis — metabolism and respiration in the absence of growth

Helena I. Boshoff; Clifton E. Barry

Human tuberculosis is a complex disease caused by bacterial populations that are located in discrete lesions (microenvironments) in a single host. Some of these microenvironments are conducive to replication, whereas others restrict bacterial growth without necessarily sterilizing the infecting microorganisms. The physical and biochemical milieu in these lesions is poorly defined. None of the existing animal models for tuberculosis (except perhaps non-human primates) reproduce the diversity of disease progression that is seen in humans. Nonetheless, transcriptomics and studies using bacterial mutants have led to testable hypotheses about metabolic functions that are essential for viability in the absence of replication. A complete picture of bacterial metabolism must balance reducing equivalents while maintaining an energized membrane and basic cellular processes.


Science | 2009

Meropenem-Clavulanate Is Effective Against Extensively Drug-Resistant Mycobacterium tuberculosis

Jean Emmanuel Hugonnet; Lee W. Tremblay; Helena I. Boshoff; Clifton E. Barry; John S. Blanchard

β-lactam antibiotics are ineffective against Mycobacterium tuberculosis, being rapidly hydrolyzed by the chromosomally encoded blaC gene product. The carbapenem class of β-lactams are very poor substrates for BlaC, allowing us to determine the three-dimensional structure of the covalent BlaC-meropenem covalent complex at 1.8 angstrom resolution. When meropenem was combined with the β-lactamase inhibitor clavulanate, potent activity against laboratory strains of M. tuberculosis was observed [minimum inhibitory concentration (MICmeropenem) less than 1 microgram per milliliter], and sterilization of aerobically grown cultures was observed within 14 days. In addition, this combination exhibited inhibitory activity against anaerobically grown cultures that mimic the “persistent” state and inhibited the growth of 13 extensively drug-resistant strains of M. tuberculosis at the same levels seen for drug-susceptible strains. Meropenem and clavulanate are Food and Drug Administration–approved drugs and could potentially be used to treat patients with currently untreatable disease.


Cell | 2003

DnaE2 polymerase contributes to in vivo survival and the emergence of drug resistance in Mycobacterium tuberculosis.

Helena I. Boshoff; Michael B. Reed; Clifton E. Barry; Valerie Mizrahi

The presence of multiple copies of the major replicative DNA polymerase (DnaE) in some organisms, including important pathogens and symbionts, has remained an unresolved enigma. We postulated that one copy might participate in error-prone DNA repair synthesis. We found that UV irradiation of Mycobacterium tuberculosis results in increased mutation frequency in the surviving fraction. We identified dnaE2 as a gene that is upregulated in vitro by several DNA damaging agents, as well as during infection of mice. Loss of this protein reduces both survival of the bacillus after UV irradiation and the virulence of the organism in mice. Our data suggest that DnaE2, and not a member of the Y family of error-prone DNA polymerases, is the primary mediator of survival through inducible mutagenesis and can contribute directly to the emergence of drug resistance in vivo. These results may indicate a potential new target for therapeutic intervention.


Proceedings of the National Academy of Sciences of the United States of America | 2003

The role of RelMtb-mediated adaptation to stationary phase in long-term persistence of Mycobacterium tuberculosis in mice

John L. Dahl; Carl N. Kraus; Helena I. Boshoff; Bernard Doan; Korrie Foley; David Avarbock; Gilla Kaplan; Valerie Mizrahi; Harvey Rubin; Clifton E. Barry

Long-term survival of nonreplicating Mycobacterium tuberculosis (Mtb) is ensured by the coordinated shutdown of active metabolism through a broad transcriptional program called the stringent response. In Mtb, this response is initiated by the enzymatic action of RelMtb and deletion of relMtb produces a strain (H37RvΔrelMtb) severely compromised in the maintenance of long-term viability. Although aerosol inoculation of mice with H37RvΔrelMtb results in normal initial bacterial growth and containment, the ability of this strain to sustain chronic infection is severely impaired. Significant histopathologic differences were noted in lungs and spleens of mice infected with H37RvΔrelMtb compared with controls throughout the course of the infection. Microarray analysis revealed that H37RvΔrelMtb suffers from a generalized alteration of the transcriptional apparatus, as well as specific changes in the expression of virulence factors, cell-wall biosynthetic enzymes, heat shock proteins, and secreted antigens that may alter immune recognition of the recombinant organism. Thus, RelMtb is critical for the successful establishment of persistent infection in mice by altering the expression of antigenic and enzymatic factors that may contribute to successful latent infection.


Antimicrobial Agents and Chemotherapy | 2012

SQ109 Targets MmpL3, a Membrane Transporter of Trehalose Monomycolate Involved in Mycolic Acid Donation to the Cell Wall Core of Mycobacterium tuberculosis

Kapil Tahlan; Regina Wilson; David B. Kastrinsky; Kriti Arora; Vinod Nair; Elizabeth R. Fischer; S. Whitney Barnes; John R. Walker; David Alland; Clifton E. Barry; Helena I. Boshoff

ABSTRACT SQ109, a 1,2-diamine related to ethambutol, is currently in clinical trials for the treatment of tuberculosis, but its mode of action remains unclear. Here, we demonstrate that SQ109 disrupts cell wall assembly, as evidenced by macromolecular incorporation assays and ultrastructural analyses. SQ109 interferes with the assembly of mycolic acids into the cell wall core of Mycobacterium tuberculosis, as bacilli exposed to SQ109 show immediate inhibition of trehalose dimycolate (TDM) production and fail to attach mycolates to the cell wall arabinogalactan. These effects were not due to inhibition of mycolate synthesis, since total mycolate levels were unaffected, but instead resulted in the accumulation of trehalose monomycolate (TMM), the precursor of TDM and cell wall mycolates. In vitro assays using purified enzymes showed that this was not due to inhibition of the secreted Ag85 mycolyltransferases. We were unable to achieve spontaneous generation of SQ109-resistant mutants; however, analogs of this compound that resulted in similar shutdown of TDM synthesis with concomitant TMM accumulation were used to spontaneously generate resistant mutants that were also cross-resistant to SQ109. Whole-genome sequencing of these mutants showed that these all had mutations in the essential mmpL3 gene, which encodes a transmembrane transporter. Our results suggest that MmpL3 is the target of SQ109 and that MmpL3 is a transporter of mycobacterial TMM.


PLOS Pathogens | 2011

Sequence-based analysis uncovers an abundance of non-coding RNA in the total transcriptome of Mycobacterium tuberculosis.

Kristine B. Arnvig; Iñaki Comas; Nicholas R. Thomson; Joanna Houghton; Helena I. Boshoff; Nicholas J. Croucher; Graham Rose; Timothy T. Perkins; Julian Parkhill; Gordon Dougan; Douglas B. Young

RNA sequencing provides a new perspective on the genome of Mycobacterium tuberculosis by revealing an extensive presence of non-coding RNA, including long 5’ and 3’ untranslated regions, antisense transcripts, and intergenic small RNA (sRNA) molecules. More than a quarter of all sequence reads mapping outside of ribosomal RNA genes represent non-coding RNA, and the density of reads mapping to intergenic regions was more than two-fold higher than that mapping to annotated coding sequences. Selected sRNAs were found at increased abundance in stationary phase cultures and accumulated to remarkably high levels in the lungs of chronically infected mice, indicating a potential contribution to pathogenesis. The ability of tubercle bacilli to adapt to changing environments within the host is critical to their ability to cause disease and to persist during drug treatment; it is likely that novel post-transcriptional regulatory networks will play an important role in these adaptive responses.


Communicative & Integrative Biology | 2009

The mechanism of action of PA-824: Novel insights from transcriptional profiling

Ujjini H. Manjunatha; Helena I. Boshoff; Clifton E. Barry

The bicyclic nitroimidazole PA-824 is a pro-drug with a very complex mechanism of action active against both replicating and hypoxic, non-replicating Mycobacterium tuberculosis. Microarray analysis of the mode of action of PA-824 showed a puzzling mixed effect both on genes responsive to both cell wall inhibition (like isoniazid) and respiratory poisoning (like cyanide). The aerobic killing mechanism of this drug appears to involve inhibition of cell wall mycolic acid biosynthesis through an as yet unknown molecular mechanism. However, the structure-activity relationships governing aerobic activity do not parallel the relationships determining anaerobic activity. Based on the metabolite profiling of PA-824 and various derivatives by Ddn-mediated activation, we have shown that PA-824 acts directly as an NO donor.1 This respiratory poisoning through nitric oxide release seemed to be a crucial element of anaerobic activity by PA-824. The effect of PA-824 on the respiratory complex under hypoxic non-replicating conditions was also manifested in a rapid drop in intracellular ATP levels, again similar to that observed by cyanide treatment. Thus, transcriptional profiling provided valuable clues to elucidating the molecular mechanism of mycobacterial killing.


PLOS Pathogens | 2011

Fumarate Reductase Activity Maintains an Energized Membrane in Anaerobic Mycobacterium tuberculosis

Shinya Watanabe; Michael B. Zimmermann; Michael B. Goodwin; Uwe Sauer; Clifton E. Barry; Helena I. Boshoff

Oxygen depletion of Mycobacterium tuberculosis engages the DosR regulon that coordinates an overall down-regulation of metabolism while up-regulating specific genes involved in respiration and central metabolism. We have developed a chemostat model of M. tuberculosis where growth rate was a function of dissolved oxygen concentration to analyze metabolic adaptation to hypoxia. A drop in dissolved oxygen concentration from 50 mmHg to 0.42 mmHg led to a 2.3 fold decrease in intracellular ATP levels with an almost 70-fold increase in the ratio of NADH/NAD+. This suggests that re-oxidation of this co-factor becomes limiting in the absence of a terminal electron acceptor. Upon oxygen limitation genes involved in the reverse TCA cycle were upregulated and this upregulation was associated with a significant accumulation of succinate in the extracellular milieu. We confirmed that this succinate was produced by a reversal of the TCA cycle towards the non-oxidative direction with net CO2 incorporation by analysis of the isotopomers of secreted succinate after feeding stable isotope (13C) labeled precursors. This showed that the resulting succinate retained both carbons lost during oxidative operation of the TCA cycle. Metabolomic analyses of all glycolytic and TCA cycle intermediates from 13C-glucose fed cells under aerobic and anaerobic conditions showed a clear reversal of isotope labeling patterns accompanying the switch from normoxic to anoxic conditions. M. tuberculosis encodes three potential succinate-producing enzymes including a canonical fumarate reductase which was highly upregulated under hypoxia. Knockout of frd, however, failed to reduce succinate accumulation and gene expression studies revealed a compensatory upregulation of two homologous enzymes. These major realignments of central metabolism are consistent with a model of oxygen-induced stasis in which an energized membrane is maintained by coupling the reductive branch of the TCA cycle to succinate secretion. This fermentative process may offer unique targets for the treatment of latent tuberculosis.

Collaboration


Dive into the Helena I. Boshoff's collaboration.

Top Co-Authors

Avatar

Clifton E. Barry

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cynthia S. Dowd

George Washington University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kriti Arora

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Thomas Dick

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura E. Via

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Tathagata Mukherjee

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge