Helena J. Shepherd
University of Kent
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Helena J. Shepherd.
Chemistry: A European Journal | 2012
Carlos Bartual-Murgui; Lionel Salmon; Amal Akou; Norma Ortega-Villar; Helena J. Shepherd; M. Carmen Muñoz; Gábor Molnár; José Antonio Real; Azzedine Bousseksou
The synthesis and characterization of a series of three-dimensional (3D) Hofmann-like clathrate porous metal-organic framework (MOF) materials [Fe(bpac)M(CN)(4)] (M=Pt, Pd, and Ni; bpac=bis(4-pyridyl)acetylene) that exhibit spin-crossover behavior is reported. The rigid bpac ligand is longer than the previously used azopyridine and pyrazine and has been selected with the aim to improve both the spin-crossover properties and the porosity of the corresponding porous coordination polymers (PCPs). The 3D network is composed of successive {Fe[M(CN)(4)]}(n) planar layers bridged by the bis-monodentate bpac ligand linked in the apical positions of the iron center. The large void between the layers, which represents 41.7% of the unit cell, can accommodate solvent molecules or free bpac ligand. Different synthetic strategies were used to obtain a range of spin-crossover behaviors with hysteresis loops around room temperature; the samples were characterized by magnetic susceptibility, calorimetric, Mössbauer, and Raman measurements. The complete physical study reveals a clear relationship between the quantity of included bpac molecules and the completeness of the spin transition, thereby underlining the key role of the π-π stacking interactions operating between the host and guest bpac molecules within the network. Although the inclusion of the bpac molecules tends to increase the amount of active iron centers, no variation of the transition temperature was measured. We have also investigated the ability of the network to accommodate the inclusion of molecules other than water and bpac and studied the synergy between the host-guest interaction and the spin-crossover behavior. In fact, the clathration of various aromatic molecules revealed specific modifications of the transition temperature. Finally, the transition temperature and the completeness of the transition are related to the nature of the metal associated with the iron center (Ni, Pt, or Pd) and also to the nature and the amount of guest molecules in the lattice.
Nature Communications | 2013
Helena J. Shepherd; Il’ya A. Gural’skiy; Carlos M. Quintero; Simon Tricard; Lionel Salmon; Gábor Molnár; Azzedine Bousseksou
Molecular switches have great potential to convert different forms of energy into mechanical motion; however, their use is often limited by the narrow range of operating conditions. Here we report on the development of bilayer actuator devices using molecular spin crossover materials. Motion of the bilayer cantilever architecture results from the huge spontaneous strain accompanying the spin-state switching. The advantages of using spin crossover complexes here are substantial. The operating conditions used to switch the device can be manipulated through chemical modification, and there are many existing compounds to choose from. Spin crossover materials may be switched by diverse stimuli including light, temperature, pressure, guest molecules and magnetic field, allowing complex input combinations or highly specific operation. We demonstrate the versatility of this approach by fabricating actuators from four different spin crossover materials and by using both thermal variation and light to induce motion in a controlled direction.
Angewandte Chemie | 2013
Xin Bao; Helena J. Shepherd; Lionel Salmon; Gábor Molnár; Ming-Liang Tong; Azzedine Bousseksou
A straightforward method for the reversible modification ofsolid-state properties is a goal being constantly pursued in thedevelopment of molecular switches, and molecular electronicand photonic devices. As one of the most attractive molecule-based switchable materials, spin crossover (SCO) complexespresent different magnetic, optical, electrical and structuralproperties in response to external stimuli (such as temper-ature, pressure, light, or magnetic fields), driven by conver-sionoftheelectronconfigurationbetweenhigh spin(HS)andlow spin (LS) states.
Angewandte Chemie | 2011
M. Griffin; Stephen Shakespeare; Helena J. Shepherd; Charles J. Harding; Jean-François Létard; Cédric Desplanches; Andrés E. Goeta; Judith A. K. Howard; Annie K. Powell; Valeriu Mereacre; Yann Garcia; A.D. Naik; Helge Müller-Bunz; Grace G. Morgan
Stepping up: A two-step magnetic spin transition with accompanying structural phase transitions is reported for the first time for Fe III. The transitions are observed at 187 K and 90 K on cooling with a hysteretic transition recorded upon heating during the first crossover at 106 K. The intermediate phase persists over 97 K and contains an unprecedented [HS-HS-LS] motif with tripling of the unit cell. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Journal of Materials Chemistry | 2011
Carlos Bartual-Murgui; Norma Ortega-Villar; Helena J. Shepherd; M. Carmen Muñoz; Lionel Salmon; Gábor Molnár; Azzedine Bousseksou; José Antonio Real
The porous coordination polymers (PCPs) of general formula {Fe(bpac)[M(CN)4]}·guest (M = Pt, Pd) exhibit larger channels than previously synthesised 3D-Hofmann-like PCP. The channels are partially occupied by uncoordinated guest bpac ligands and labile H2O molecules. These PCPs exhibit very scarce cooperative spin crossover behaviour around room temperature with a large hysteresis loop (up to 49 K) and also display sensitivity to humidity and guest molecules. The inclusion of bpac molecules in the 3D network can be avoided by adding competitive volatile molecules during the crystallization process, affording the guest-free material. The spin crossover behavior of different guest and guest-free materials is also presented.
Journal of Materials Chemistry C | 2014
Il'ya A. Gural'skiy; Carlos M. Quintero; José Sánchez Costa; Philippe Demont; Gábor Molnár; Lionel Salmon; Helena J. Shepherd; Azzedine Bousseksou
Composites of the spin crossover complex [Fe(trz)(H-trz)2](BF4) (H-trz = 1,2,4-4H-triazole and trz = 1,2,4-triazolato) dispersed in a poly(methylmethacrylate) (PMMA) matrix were synthesized and investigated for their spin crossover properties by optical reflectivity, Raman spectroscopy and calorimetry. These composite films were used to fabricate bilayer cantilevers that can perform efficient and tuneable mechanical actuation based on the spin transition. A prototype device that uses the spin transition phenomenon to convert electrical energy into mechanical motion through Joule heating is described. This device is used to perform oscillatory actuation driven by a modulated current. The ability to tune the performance of this electromechanical system is demonstrated by varying the working temperature, the applied ac current and its frequency.
Angewandte Chemie | 2013
Tran Quang Hung; Ferial Terki; Souleymane Kamara; Mourad Dehbaoui; Salam Charar; Brajalal Sinha; CheolGi Kim; P. Gandit; Il'ya A. Gural'skiy; Gábor Molnár; Lionel Salmon; Helena J. Shepherd; Azzedine Bousseksou
Recently, nanoscale spin-crossover (SCO) particles have been the subject of great interest. The change in the 3d electronic configuration of the metal ion results in significant changes in the metal-ligand bond length and geometry, as well as in the molecular volume. Hence the spin switching process is accompanied by a remarkable change in the color, mechanical properties, dielectric properties, and magnetic susceptibility. The synthesis and investigation of these materials at reduced length scales is central not only to the exploration of fundamental effects of size reduction in these systems, but also for the development of new functional materials with applications, including guest molecule sensing, memory devices, and molecular switches
Chemistry: A European Journal | 2015
Laurence J. Kershaw Cook; Helena J. Shepherd; Tim P. Comyn; Chérif Baldé; Oscar Cespedes; Guillaume Chastanet; Malcolm A. Halcrow
Crystalline [Fe(bppSMe)2][BF4]2 (1; bppSMe = 4-(methylsulfanyl)-2,6-di(pyrazol-1-yl)pyridine) undergoes an abrupt spin-crossover (SCO) event at 265±5 K. The crystals also undergo a separate phase transition near 205 K, involving a contraction of the unit-cell a axis to one-third of its original value (high-temperature phase 1; Pbcn, Z = 12; low-temperature phase 2; Pbcn, Z = 4). The SCO-active phase 1 contains two unique molecular environments, one of which appears to undergo SCO more gradually than the other. In contrast, powder samples of 1 retain phase 1 between 140-300 K, although their SCO behaviour is essentially identical to the single crystals. The compounds [Fe(bppBr)2][BF4]2 (2; bppBr = 4-bromo-2,6-di(pyrazol-1-yl)pyridine) and [Fe(bppI)2][BF4]2 (3; bppI = 4-iodo-2,6-di(pyrazol-1-yl)-pyridine) exhibit more gradual SCO near room temperature, and adopt phase 2 in both spin states. Comparison of 1-3 reveals that the more cooperative spin transition in 1, and its separate crystallographic phase transition, can both be attributed to an intermolecular steric interaction involving the methylsulfanyl substituents. All three compounds exhibit the light-induced excited-spin-state trapping (LIESST) effect with T(LIESST = 70-80 K), but show complicated LIESST relaxation kinetics involving both weakly cooperative (exponential) and strongly cooperative (sigmoidal) components.
Chemistry: A European Journal | 2013
Carlos Bartual-Murgui; Amal Akou; Helena J. Shepherd; Gábor Molnár; J. Antonio Real; Lionel Salmon; Azzedine Bousseksou
A study of the spin-crossover (SCO) behavior of the tridimensional porous coordination polymer {Fe(bpac)[Pt(CN)4]} (bpac=bis(4-pyridyl)acetylene) on adsorption of different mono- and polyhalobenzene guest molecules is presented. The resolution of the crystal structure of {Fe(bpac)[Pt(CN)4]}⋅G (G=1,2,4-trichlorobenzene) shows preferential guest sites establishing π⋅⋅⋅π stacking interactions with the host framework. These host-guest interactions may explain the relationship between the modification of the SCO behavior and both the chemical nature of the guest molecule (electronic factors) and the number of adsorbed molecules (steric factors).
New Journal of Chemistry | 2011
Helena J. Shepherd; Carlos Bartual-Murgui; Gábor Molnár; José Antonio Real; M. Carmen Muñoz; Lionel Salmon; Azzedine Bousseksou
The synthesis and crystal structure of the interpenetrated metal–organic framework material Fe(bpac)2[Ag(CN)2]2 (bpac = 4,4′-bis(pyridyl)acetylene) are reported along with the characterization of its spin crossover properties by variable temperature magnetometry and Mossbauer spectroscopy. The complex presents an incomplete stepped spin transition as a function of temperature that is modified upon successive thermal cycling. The pressure-induced transition has also been investigated by means of high pressure Raman spectroscopy using a diamond anvil cell. The results show that it is possible to reach the thermally-inaccessible fully low spin state at room temperature by applying hydrostatic pressure to the sample.