Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Helena Johansson is active.

Publication


Featured researches published by Helena Johansson.


Journal of Bone and Mineral Research | 2005

Predictive Value of BMD for Hip and Other Fractures.

Olof Johnell; John A. Kanis; Anders Odén; Helena Johansson; Chris De Laet; Pierre D. Delmas; John A. Eisman; Seiko Fujiwara; Heikki Kröger; Dan Mellström; Pierre J. Meunier; L. Joseph Melton; T W O'Neill; Huibert A. P. Pols; Jonathan Reeve; A J Silman; Alan Tenenhouse

The relationship between BMD and fracture risk was estimated in a meta‐analysis of data from 12 cohort studies of ∼39,000 men and women. Low hip BMD was an important predictor of fracture risk. The prediction of hip fracture with hip BMD also depended on age and z score.


Osteoporosis International | 2005

Assessment of fracture risk.

John A. Kanis; Frederik Borgstrom; Chris De Laet; Helena Johansson; Olof Johnell; Bengt Jönsson; Anders Odén; Niklas Zethraeus; Bruce Pfleger; N. Khaltaev

The diagnosis of osteoporosis is based on the measurement of bone mineral density (BMD). There are a number of clinical risk factors that provide information on fracture risk over and above that given by BMD. The assessment of fracture risk thus needs to be distinguished from diagnosis to take account of the independent value of the clinical risk factors. These include age, a prior fragility fracture, a parental history of hip fracture, smoking, use of systemic corticosteroids, excess alcohol intake and rheumatoid arthritis. The independent contribution of these risk factors can be integrated by the calculation of fracture probability with or without the use of BMD. Treatment can then be offered to those identified to have a fracture probability greater than an intervention threshold.


Journal of Bone and Mineral Research | 2004

A meta-analysis of prior corticosteroid use and fracture risk

John A. Kanis; Helena Johansson; Anders Odén; Olof Johnell; Chris De Laet; L. Joseph Melton; Alan Tenenhouse; Jonathan Reeve; A J Silman; Huibert A. P. Pols; John A. Eisman; Eugene McCloskey; Dan Mellström

The relationship between use of corticosteroids and fracture risk was estimated in a meta‐analysis of data from seven cohort studies of ∼42,000 men and women. Current and past use of corticosteroids was an important predictor of fracture risk that was independent of prior fracture and BMD.


Osteoporosis International | 2005

Smoking and fracture risk: a meta-analysis.

John A. Kanis; Olof Johnell; Anders Odén; Helena Johansson; C De Laet; John A. Eisman; Saeko Fujiwara; Heikki Kröger; Eugene McCloskey; Dan Mellström; L. J. Melton; Huibert A. P. Pols; Jonathan Reeve; A J Silman; Alan Tenenhouse

Smoking is widely considered a risk factor for future fracture. The aim of this study was to quantify this risk on an international basis and to explore the relationship of this risk with age, sex and bone mineral density (BMD). We studied 59,232 men and women (74% female) from ten prospective cohorts comprising EVOS/EPOS, DOES, CaMos, Rochester, Sheffield, Rotterdam, Kuopio, Hiroshima and two cohorts from Gothenburg. Cohorts were followed for a total of 250,000 person-years. The effect of current or past smoking, on the risk of any fracture, any osteoporotic fracture and hip fracture alone was examined using a Poisson model for each sex from each cohort. Covariates examined were age, sex and BMD. The results of the different studies were merged using the weighted β-coefficients. Current smoking was associated with a significantly increased risk of any fracture compared to non-smokers (RR=1.25; 95% Confidence Interval (CI)=1.15–1.36). Risk ratio (RR) was adjusted marginally downward when account was taken of BMD, but it remained significantly increased (RR=1.13). For an osteoporotic fracture, the risk was marginally higher (RR=1.29; 95% CI=1.13–1.28). The highest risk was observed for hip fracture (RR=1.84; 95% CI=1.52–2.22), but this was also somewhat lower after adjustment for BMD (RR=1.60; 95% CI=1.27–2.02). Risk ratios were significantly higher in men than in women for all fractures and for osteoporotic fractures, but not for hip fracture. Low BMD accounted for only 23% of the smoking-related risk of hip fracture. Adjustment for body mass index had a small downward effect on risk for all fracture outcomes. For osteoporotic fracture, the risk ratio increased with age, but decreased with age for hip fracture. A smoking history was associated with a significantly increased risk of fracture compared with individuals with no smoking history, but the risk ratios were lower than for current smoking. We conclude that a history of smoking results in fracture risk that is substantially greater than that explained by measurement of BMD. Its validation on an international basis permits the use of this risk factor in case finding strategies.


Bone | 2008

A reference standard for the description of osteoporosis

John A. Kanis; Eugene McCloskey; Helena Johansson; Anders Odén; L. Joseph Melton; N. Khaltaev

In 1994, the World Health Organization published diagnostic criteria for osteoporosis. Since then, many new technologies have been developed for the measurement of bone mineral at multiple skeletal sites. The information provided by each assessment will describe the clinical characteristics, fracture risk and epidemiology of osteoporosis differently. Against this background, there is a need for a reference standard for describing osteoporosis. In the absence of a true gold standard, this paper proposes that the reference standard should be based on bone mineral density (BMD) measurement made at the femoral neck with dual-energy X-ray absorptiometry (DXA). This site has been the most extensively validated, and provides a gradient of fracture risk as high as or higher than that of many other techniques. The recommended reference range is the NHANES III reference database for femoral neck measurements in women aged 20-29 years. A similar cut-off value for femoral neck BMD that is used to define osteoporosis in women can be used for the diagnosis of osteoporosis in men - namely, a value for BMD 2.5 SD or more below the average for young adult women. The adoption of DXA as a reference standard provides a platform on which the performance characteristics of less well established and new methodologies can be compared.


Journal of Bone and Mineral Research | 2008

Older Men with Low Serum Estradiol and High Serum SHBG Have an Increased Risk of Fractures

Dan Mellström; Liesbeth Vandenput; Hans Mallmin; Anna H Holmberg; Mattias Lorentzon; Anders Odén; Helena Johansson; Eric S. Orwoll; Fernand Labrie; Magnus Karlsson; Östen Ljunggren; Claes Ohlsson

Osteoporosis‐related fractures constitute a major health concern not only in women but also in men. To study the predictive role of serum sex steroids for fracture risk in men, serum sex steroids were analyzed by the specific gas chromatography‐mass spectrometry technique at baseline in older men (n = 2639; mean, 75 yr of age) of the prospective population‐based MrOS Sweden cohort. Fractures occurring after baseline were validated (average follow‐up of 3.3 yr). The incidence for having at least one validated fracture after baseline was 20.9/1000 person‐years. Estradiol (E2; hazard ratio [HR] per SD decrease, 1.34; 95% CI, 1.22–1.49), free estradiol (fE2; HR per SD decrease, 1.41; 95% CI, 1.28–1.55), testosterone (T; HR per SD decrease, 1.27; 95% CI, 1.16–1.39), and free testosterone (fT; HR per SD decrease, 1.32; 95% CI, 1.21–1.44) were all inversely, whereas sex hormone–binding globulin (SHBG; HR per SD increase, 1.41; 95% CI, 1.22–1.63) was directly related to fracture risk. Multivariable proportional hazards regression models, adjusted for age, suggested that fE2 and SHBG (p < 0.001), but not fT, were independently associated with fracture risk. Further subanalyses of fracture type showed that fE2 was inversely associated with clinical vertebral fractures (HR per SD decrease, 1.57; 95% CI, 1.36–1.80), nonvertebral osteoporosis fractures (HR per SD decrease, 1.42; 95% CI, 1.23–1.65), and hip fractures (HR per SD decrease, 1.44; 95% CI, 1.18–1.76). The inverse relation between serum E2 and fracture risk was nonlinear with a strong relation <16 pg/ml for E2 and 0.3 pg/ml for fE2. In conclusion, older Swedish men with low serum E2 and high SHBG levels have an increased risk of fractures.


Journal of Bone and Mineral Research | 2012

FRAX underestimates fracture risk in patients with diabetes

Lora Giangregorio; William D. Leslie; Lisa M. Lix; Helena Johansson; Anders Odén; Eugene McCloskey; John A. Kanis

The study objective was to determine whether diabetes is a risk factor for incident hip or major osteoporotic fractures independent of the WHO fracture risk assessment tool (FRAX). Men and women with diabetes (n = 3518) and nondiabetics (n = 36,085) aged ≥50 years at the time of bone mineral density (BMD) testing (1990 to 2007) were identified in a large clinical database from Manitoba, Canada. FRAX probabilities were calculated, and fracture outcomes to 2008 were established via linkage with a population‐based data repository. Multivariable Cox proportional hazards models were used to determine if diabetes was associated with incident hip fractures or major osteoporotic fractures after controlling for FRAX risk factors. Mean 10‐year probabilities of fracture were similar between groups for major fractures (diabetic 11.1 ± 7.2 versus nondiabetic 10.9 ± 7.3, p = 0.116) and hip fractures (diabetic 2.9 ± 4.4 versus nondiabetic 2.8 ± 4.4, p = 0.400). Diabetes was a significant predictor of subsequent major osteoporotic fracture (hazard ratio [HR] = 1.61, 95% confidence interval [CI] 1.42–1.83) after controlling for age, sex, medication use, and FRAX risk factors including BMD. Similar results were seen after adjusting for FRAX probability directly (HR = 1.59, 95% CI 1.40–1.79). Diabetes was also associated with significantly higher risk for hip fractures (p < 0.001). Higher mortality from diabetes attenuated but did not eliminate the excess fracture risk. FRAX underestimated observed major osteoporotic and hip fracture risk in diabetics (adjusted for competing mortality) but demonstrated good concordance with observed fractures for nondiabetics. We conclude that diabetes confers an increased risk of fracture that is independent of FRAX derived with BMD. This suggests that diabetes might be considered for inclusion in future iterations of FRAX.


Journal of Bone and Mineral Research | 2010

Independent clinical validation of a Canadian FRAX tool: fracture prediction and model calibration.

William D. Leslie; Lisa M. Lix; Helena Johansson; Anders Odén; Eugene McCloskey; John A. Kanis

A FRAX model for Canada was constructed for prediction of osteoporotic and hip fracture risk using national hip fracture data with and without the use of femoral neck bone mineral density (BMD). Performance of this system was assessed independently in a large clinical cohort of 36,730 women and 2873 men from the Manitoba Bone Density Program database that tracks all clinical dual‐energy X‐ray absorptiometry (DXA) test results for the Province of Manitoba, Canada. Linkage with other provincial health databases allowed for the direct comparison of fracture risk estimates from the Canadian FRAX model with observed fracture rates to 10 years (549 individuals with incident hip fractures and 2543 with incident osteoporotic fractures). The 10‐year Kaplan‐Meier estimate for hip fractures in women was 2.7% [95% confidence interval (CI) 2.1–3.4%] with a predicted value of 2.8% for FRAX with BMD, and in men the observed risk was 3.5% (95% CI 0.8–6.2%) with predicted value of 2.9%. The 10‐year estimate of osteoporotic fracture risk for all women was 12.0% (95% CI 10.8–13.4%) with a predicted value of 11.1% for FRAX with BMD, and in men, the observed risk was 10.7% (95% CI 6.6–14.9%) with a predicted value of 8.4%. Discrepancies were observed within some subgroups but generally were small. Fracture discrimination based on receiver operating characteristic curve analysis was comparable with published meta‐analyses with area under the curve for osteoporotic fracture prediction of 0.694 (95% CI 0.684–0.705) for FRAX with BMD and for hip fractures 0.830 (95% CI 0.815–0.846), both of which were better than FRAX without BMD or BMD alone. Individual risk factors considered by FRAX made significant independent contributions to fracture prediction in one or more of the models. In conclusion, a Canadian FRAX tool calibrated on national hip fracture data generates fracture risk predictions that generally are consistent with observed fracture rates across a wide range of risk categories.


Osteoporosis International | 2005

A meta-analysis of milk intake and fracture risk: low utility for case finding

John A. Kanis; Helena Johansson; Anders Odén; Chris De Laet; Olof Johnell; John A. Eisman; Eugene McCloskey; Dan Mellström; Huibert A. P. Pols; Jonathan Reeve; A J Silman; Alan Tenenhouse

A low intake of calcium is widely considered to be a risk factor for future fracture. The aim of this study was to quantify this risk on an international basis and to explore the effect of age, gender and bone mineral density (BMD) on this risk. We studied 39,563 men and women (69% female) from six prospectively studied cohorts comprising EVOS/EPOS, CaMos, DOES, the Rotterdam study, the Sheffield study and a cohort from Gothenburg. Cohorts were followed for 152,000 person-years. The effect of calcium intake as judged by the intake of milk on the risk of any fracture, any osteoporotic fracture and hip fracture alone was examined using a Poisson model for each sex from each cohort. Covariates examined were age and BMD. The results of the different studies were merged by using the weighted β-coefficients. A low intake of calcium (less than 1 glass of milk daily) was not associated with a significantly increased risk of any fracture, osteoporotic fracture or hip fracture. There was no difference in risk ratio between men and women. When both sexes were combined there was a small but non-significant increase in the risk of osteoporotic and of hip fracture. There was also a small increase in the risk of an osteoporotic fracture with age which was significant at the age of 80 years (RR=1.15; 95% CI=1.02–1.30) and above. The association was no longer significant after adjustment for BMD. No significant relationship was observed by age for low milk intake and hip fracture risk. We conclude that a self-reported low intake of milk is not associated with any marked increase in fracture risk and that the use of this risk indicator is of little or no value in case-finding strategies.


Osteoporosis International | 2005

The impact of the use of multiple risk indicators for fracture on case-finding strategies: a mathematical approach

Chris De Laet; Anders Odén; Helena Johansson; Olof Johnell; Bengt Jönsson; John A. Kanis

The value of bone mineral density (BMD) measurements to stratify fracture probability can be enhanced in a case-finding strategy that combines BMD measurement with independent clinical risk indicators. Putative risk indicators include age and gender, BMI or weight, prior fracture, the use of corticosteroids, and possibly others. The aim of the present study was to develop a mathematical framework to quantify the impact of using combinations of risk indicators with BMD in case finding. Fracture probability can be expressed as a risk gradient, i.e. a relative risk (RR) of fracture per standard deviation (SD) change in BMD. With the addition of other continuous or categorical risk indicators a continuous distribution of risk indicators is obtained that approaches a normal distribution. It is then possible to calculate the risk of individuals compared with the average risk in the population, stratified by age and gender. A risk indicator with a gradient of fracture risk of 2 per SD identified 36% of the population as having a higher than average fracture risk. In individuals so selected, the risk was on average 1.7 times that of the general population. Where, through the combination of several risk indicators, the gradient of risk of the test increased to 4 per SD, a smaller proportion (24%) was identified as having a higher than average risk, but the average risk in this group was 3.1 times that of the population, which is a much better performance. At higher thresholds of risk, similar phenomena were found. We conclude that, whereas the change of the proportion of the population detected to be at high risk is small, the performance of a test is improved when the RR per SD is higher, indicated by the higher average risk in those identified to be at risk. Case-finding strategies that combine clinical risk indicators with BMD have increased efficiency, while having a modest impact on the number of individuals requiring treatment. Therefore, the cost-effectiveness is enhanced.

Collaboration


Dive into the Helena Johansson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anders Odén

University of Sheffield

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dan Mellström

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Claes Ohlsson

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge