Helena Karlström
Karolinska Institutet
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Helena Karlström.
Annals of Neurology | 2010
Agnes Luty; John B. Kwok; Carol Dobson-Stone; Clement Loy; Kirsten G. Coupland; Helena Karlström; Tomasz Sobow; Joanna Tchorzewska; Aleksandra Maruszak; Maria Barcikowska; Peter K. Panegyres; Cezary Zekanowski; William S. Brooks; Kelly L. Williams; Ian P. Blair; Karen A. Mather; Perminder S. Sachdev; Glenda M. Halliday; Peter R. Schofield
Frontotemporal lobar degeneration (FTLD) is the most common cause of early‐onset dementia. Pathological ubiquitinated inclusion bodies observed in FTLD and motor neuron disease (MND) comprise trans‐activating response element (TAR) DNA binding protein (TDP‐43) and/or fused in sarcoma (FUS) protein. Our objective was to identify the causative gene in an FTLD‐MND pedigree with no mutations in known dementia genes.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Helena Karlström; Paul Beatus; Karin Dannaeus; Gavin Chapman; Urban Lendahl; Johan Lundkvist
Notch receptors are single transmembrane receptors that contain a large number of epidermal growth factor-like repeats (EGF repeats) in their extracellular domains. Mutations in the EGF repeats of the human Notch 3 receptor lead to the vascular dementia disease Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL). The vast majority of CADASIL mutations are missense mutations removing or inserting cysteine residues in the EGF repeats, but it is not yet clear whether these mutations primarily affect receptor trafficking, maturation, and/or signaling. To address this issue, we have generated and analyzed stable cell lines expressing either wild-type murine Notch 3 (mNotch 3) or the mutant mNotch 3R142C, which corresponds to the prevalent CADASIL form of Notch 3, Notch 3R141C in humans. We find that a lower proportion of mNotch 3R142C is expressed in the site 1-cleaved configuration, and that reduced amounts of mNotch 3R142C appear at the cell surface, as compared with wild-type mNotch 3. This observation is accompanied by a higher propensity for mNotch 3R142C to form intracellular aggregates, which may be a result of increased accumulation or slowed transport in the secretory pathway. In contrast to the impaired cell surface expression, mNotch 3R142C signals equally well in response to Delta 1 and Jagged 1 as wild-type mNotch 3. Taken together, these data suggest that trafficking and localization rather than signaling of mNotch 3 are affected in mNotch 3R142C.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Yoshihito Taniguchi; Helena Karlström; Johan Lundkvist; Tomohiko Mizutani; Akira Otaka; Monica Vestling; Alan Bernstein; Dorit Donoviel; Urban Lendahl; Tasuku Honjo
Notch receptors undergo three distinct proteolytic cleavages during maturation and activation. The third cleavage occurs within the plasma membrane and results in the release and translocation of the intracellular domain into the nucleus to execute Notch signaling. This so-called γ-secretase cleavage is under the control of presenilins, but it is not known whether presenilins themselves carry out the cleavage or whether they act by means of yet-unidentified γ-secretase(s). In this article, we show that Notch intracellular cleavage in intact cells completely depends on presenilins. In contrast, partial purification of the Notch cleavage activity reveals an activity, which is present only in protein extracts from presenilin-containing cells, and which does not comigrate with presenilin. This finding provides evidence for the existence of a specific Notch-processing activity, which is physically distinct from presenilins. We conclude from these experiments that presenilins are critically required for Notch intracellular cleavage but are not themselves directly mediating the cleavage.
Journal of Neurochemistry | 2007
Helena Karlström; William S. Brooks; John B. Kwok; G. Anthony Broe; Jillian J. Kril; Heather McCann; Glenda M. Halliday; Peter R. Schofield
Pedigrees with familial Alzheimer’s disease (AD) show considerable phenotypic variability. Spastic paraparesis (SP), or progressive spasticity of the lower limbs is frequently hereditary and exists either as uncomplicated (paraparesis alone) or complicated (paraparesis and other neurological features) disease subtypes. In some AD families, with presenilin‐1 (PSEN1) mutations, affected individuals also have SP. These PSEN1 AD pedigrees frequently have a distinctive and variant neuropathology, namely large, non‐cored plaques without neuritic dystrophy called cotton wool plaques (CWP). The PSEN1 AD mutations giving rise to CWP produce unusually high levels of the amyloid β peptide (Aβ) ending at position 42 or 43, and the main component of CWP is amino‐terminally truncated forms of amyloid β peptide starting after the alternative β‐secretase cleavage site at position 11. This suggests a molecular basis for the formation of CWP and an association with both SP and AD. The SP phenotype in some PSEN1 AD pedigrees also appears to be associated with a delayed onset of dementia compared with affected individuals who present with dementia only, suggesting the existence of a protective factor in some individuals with SP. Variations in neuropathology and neurological symptoms in PSEN1 AD raise the prospect that modifier genes may underlie this phenotypic heterogeneity.
Journal of Cellular and Molecular Medicine | 2016
Nuno Santos Leal; Bernadette Schreiner; Catarina Moreira Pinho; Riccardo Filadi; Birgitta Wiehager; Helena Karlström; Paola Pizzo; Maria Ankarcrona
Mitochondria are physically and biochemically in contact with other organelles including the endoplasmic reticulum (ER). Such contacts are formed between mitochondria‐associated ER membranes (MAM), specialized subregions of ER, and the outer mitochondrial membrane (OMM). We have previously shown increased expression of MAM‐associated proteins and enhanced ER to mitochondria Ca2+ transfer from ER to mitochondria in Alzheimers disease (AD) and amyloid β‐peptide (Aβ)‐related neuronal models. Here, we report that siRNA knockdown of mitofusin‐2 (Mfn2), a protein that is involved in the tethering of ER and mitochondria, leads to increased contact between the two organelles. Cells depleted in Mfn2 showed increased Ca2+ transfer from ER to mitchondria and longer stretches of ER forming contacts with OMM. Interestingly, increased contact resulted in decreased concentrations of intra‐ and extracellular Aβ40 and Aβ42. Analysis of γ‐secretase protein expression, maturation and activity revealed that the low Aβ concentrations were a result of impaired γ‐secretase complex function. Amyloid‐β precursor protein (APP), β‐site APP‐cleaving enzyme 1 and neprilysin expression as well as neprilysin activity were not affected by Mfn2 siRNA treatment. In summary, our data shows that modulation of ER–mitochondria contact affects γ‐secretase activity and Aβ generation. Increased ER–mitochondria contact results in lower γ‐secretase activity suggesting a new mechanism by which Aβ generation can be controlled.
The Journal of Neuroscience | 2012
Tomas Borgegard; Susanne Gustavsson; Charlotte B. Nilsson; Santiago Parpal; Rebecka Klintenberg; Anna-Lena Berg; Susanne Rosqvist; Lutgarde Serneels; Samuel P.S. Svensson; Fredrik Olsson; Shaobo Jin; Hongmei Yan; Johanna Wanngren; Anders Juréus; Anna Ridderstad-Wollberg; Patrik Wollberg; Kenneth Stockling; Helena Karlström; Åsa Malmberg; Johan Lund; Per I. Arvidsson; Bart De Strooper; Urban Lendahl; Johan Lundkvist
γ-Secretase inhibition represents a major therapeutic strategy for lowering amyloid β (Aβ) peptide production in Alzheimers disease (AD). Progress toward clinical use of γ-secretase inhibitors has, however, been hampered due to mechanism-based adverse events, primarily related to impairment of Notch signaling. The γ-secretase inhibitor MRK-560 represents an exception as it is largely tolerable in vivo despite displaying only a small selectivity between Aβ production and Notch signaling in vitro. In exploring the molecular basis for the observed tolerability, we show that MRK-560 displays a strong preference for the presenilin 1 (PS1) over PS2 subclass of γ-secretases and is tolerable in wild-type mice but causes dose-dependent Notch-related side effect in PS2-deficient mice at drug exposure levels resulting in a substantial decrease in brain Aβ levels. This demonstrates that PS2 plays an important role in mediating essential Notch signaling in several peripheral organs during pharmacological inhibition of PS1 and provide preclinical in vivo proof of concept for PS2-sparing inhibition as a novel, tolerable and efficacious γ-secretase targeting strategy for AD.
Experimental Cell Research | 2003
Anna Bergman; Dorota Religa; Helena Karlström; Hanna Laudon; Bengt Winblad; Lars Lannfelt; Johan Lundkvist; Jan Näslund
One of the cardinal neuropathological findings in brains from Alzheimers disease (AD) patients is the occurrence of amyloid beta-peptide (Abeta) deposits. The gamma-secretase-mediated intramembrane proteolysis event generating Abeta also results in the release of the APP intracellular domain (AICD), which may mediate nuclear signaling. It was recently shown that AICD starts at a position distal to the site predicted from gamma-secretase cleavage within the membrane. This novel site, the epsilon site, is located close to the inner leaflet of the membrane bilayer. The relationship between proteolysis at the gamma and epsilon sites has not been fully characterized. Here we studied AICD signaling in intact cells using a chimeric C99 molecule and a luciferase reporter system. We show that the release of AICD from the membrane takes place in a compartment downstream of the endoplasmic reticulum, is dependent on presenilin proteins, and can be inhibited by treatment with established gamma-secretase inhibitors. Moreover, we find that AICD signaling remains unaltered from C99 derivatives containing mutations associated with increased Abeta42 production and familial AD. These findings indicate that there are very similar routes for Abeta and AICD formation but that FAD-linked mutations in APP primarily affect gamma-secretase-mediated Abeta42 formation, and not AICD signaling.
Journal of Biological Chemistry | 2010
Johanna Wanngren; Jenny Frånberg; Anne-Lie Svensson; Hanna Laudon; Fredrik Olsson; Bengt Winblad; Frank Liu; Jan Näslund; Johan Lundkvist; Helena Karlström
γ-Secretase is an enzyme complex that mediates both Notch signaling and β-amyloid precursor protein (APP) processing, resulting in the generation of Notch intracellular domain, APP intracellular domain, and the amyloid β peptide (Aβ), the latter playing a central role in Alzheimer disease (AD). By a hitherto undefined mechanism, the activity of γ-secretase gives rise to Aβ peptides of different lengths, where Aβ42 is considered to play a particular role in AD. In this study we have examined the role of the large hydrophilic loop (amino acids 320–374, encoded by exon 10) of presenilin 1 (PS1), the catalytic subunit of γ-secretase, for γ-secretase complex formation and activity on Notch and APP processing. Deletion of exon 10 resulted in impaired PS1 endoproteolysis, γ-secretase complex formation, and had a differential effect on Aβ-peptide production. Although the production of Aβ38, Aβ39, and Aβ40 was severely impaired, the effect on Aβ42 was affected to a lesser extent, implying that the production of the AD-related Aβ42 peptide is separate from the production of the Aβ38, Aβ39, and Aβ40 peptides. Interestingly, formation of the intracellular domains of both APP and Notch was intact, implying a differential cleavage activity between the ϵ/S3 and γ sites. The most C-terminal amino acids of the hydrophilic loop were important for regulating APP processing. In summary, the large hydrophilic loop of PS1 appears to differentially regulate the relative production of different Aβ peptides without affecting Notch processing, two parameters of significance when considering γ-secretase as a target for pharmaceutical intervention in AD.
PLOS ONE | 2013
Sophia Schedin-Weiss; Mitsuhiro Inoue; Yasuhiro Teranishi; Natsuko Goto Yamamoto; Helena Karlström; Bengt Winblad; Lars O. Tjernberg
Here, we present a highly sensitive method to study protein-protein interactions and subcellular location selectively for active multicomponent enzymes. We apply the method on γ-secretase, the enzyme complex that catalyzes the cleavage of the amyloid precursor protein (APP) to generate amyloid β-peptide (Aβ), the major causative agent in Alzheimer disease (AD). The novel assay is based on proximity ligation, which can be used to study protein interactions in situ with very high sensitivity. In traditional proximity ligation assay (PLA), primary antibody recognition is typically accompanied by oligonucleotide-conjugated secondary antibodies as detection probes. Here, we first performed PLA experiments using antibodies against the γ-secretase components presenilin 1 (PS1), containing the catalytic site residues, and nicastrin, suggested to be involved in substrate recognition. To selectively study the interactions of active γ-secretase, we replaced one of the primary antibodies with a photoreactive γ-secretase inhibitor containing a PEG linker and a biotin group (GTB), and used oligonucleotide-conjugated streptavidin as a probe. Interestingly, significantly fewer interactions were detected with the latter, novel, assay, which is a reasonable finding considering that a substantial portion of PS1 is inactive. In addition, the PLA signals were located more peripherally when GTB was used instead of a PS1 antibody, suggesting that γ-secretase matures distal from the perinuclear ER region. This novel technique thus enables highly sensitive protein interaction studies, determines the subcellular location of the interactions, and differentiates between active and inactive γ-secretase in intact cells. We suggest that similar PLA assays using enzyme inhibitors could be useful also for other enzyme interaction studies.
Biochemical and Biophysical Research Communications | 2011
Jenny Frånberg; Anne-Lie Svensson; Bengt Winblad; Helena Karlström; Susanne Frykman
γ-Secretase plays an important function in the development of Alzheimer disease, since it participates in the production of the toxic amyloid β-peptide (Aβ) from the amyloid precursor protein (APP). Besides APP, γ-secretase cleaves many other substrates resulting in adverse side effects when γ-secretase inhibitors are used in clinical trials. γ-Secretase is a membrane bound protein complex consisting of at least four subunits, presenilin (PS), nicastrin, Aph-1 and Pen-2. PS and Aph-1 exist as different homologs (PS1/PS2 and Aph-1a/Aph-1b, respectively), which generates a variation in complex composition. PS1 and PS2 appears to have distinct roles since PS1 is essential during embryonic development whereas PS2 deficient mice are viable with a mild phenotype. The molecular mechanism behind this diversity is, however, largely unknown. In order to investigate whether PS1 and PS2 show different substrate specificity, we used PS1 or PS2 deficient mouse embryonic fibroblasts to study the processing on the γ-secretase substrates APP, Notch, N-cadherin, and ephrinB. We found that whereas depletion of PS1 severely affected the cleavage of all substrates, the effect of PS2 depletion was minor. In addition, less PS2 was found in active γ-secretase complexes. We also studied the effect of PS2 depletion in adult mouse brain and, in concordance with the results from the mouse embryonic fibroblasts, PS2 deficiency did not alter the cleavage of the two most important substrates, APP and Notch. In summary, this study shows that the contribution of PS2 on γ-secretase activity is of less importance, explaining the mild phenotype of PS2-deficient mice.