Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Helena Katchman is active.

Publication


Featured researches published by Helena Katchman.


Stem Cells | 2006

Human Embryonic Stem Cells and Their Differentiated Derivatives Are Less Susceptible to Immune Rejection Than Adult Cells

Micha Drukker; Helena Katchman; Gil Katz; Smadar Friedman; Elias Shezen; Eran Hornstein; Ofer Mandelboim; Yair Reisner; Nissim Benvenisty

Differentiated cell types derived from human embryonic stem cells (hESCs) may serve in the future to treat various human diseases. A crucial step toward their successful clinical application is to examine the immune response that might be launched against them after transplantation. We used two experimental platforms to examine the in vivo leukocyte response toward hESCs. First, immunocompetent and immunodeficient mouse strains were used to identify T cells as the major component that causes xenorejection of hESCs. Second, mice that were conditioned to carry peripheral blood leukocytes from human origin were used to test the human leukocyte alloresponse toward undifferentiated and differentiated hESCs. Using this model, we have detected only a minute immune response toward undifferentiated as well as differentiated hESCs over the course of 1 month, although control adult grafts were repeatedly infiltrated with lymphocytes and destroyed. Our data show that the cells evade immune destruction due to a low immunostimulatory potential. Nevertheless, a human cytotoxic T lymphocyte clone that was specifically prepared to recognize two hESC lines could lyse the cells after major histocompatibility complex class I (MHC‐I) induction. Although MHC‐I levels in hESCs are sufficient for rejection by cytotoxic T cells, our data suggest that the immunostimulatory capacity of the cells is very low. Thus, immunosuppressive regimens for hESC‐based therapeutics could be highly reduced compared with conventional organ transplantation because direct allorejection processes of hESCs and their derivatives are considerably weaker.


Journal of The American Society of Nephrology | 2006

Isolation and Characterization of Nontubular Sca-1+Lin− Multipotent Stem/Progenitor Cells from Adult Mouse Kidney

Benjamin Dekel; Lior Zangi; Elias Shezen; Shlomit Reich-Zeliger; Smadar Eventov-Friedman; Helena Katchman; Jasmin Jacob-Hirsch; Ninette Amariglio; Gideon Rechavi; Raanan Margalit; Yair Reisner

Tissue engineering and cell therapy approaches aim to take advantage of the repopulating ability and plasticity of multipotent stem cells to regenerate lost or diseased tissue. Recently, stage-specific embryonic kidney progenitor tissue was used to regenerate nephrons. Through fluorescence-activated cell sorting, microarray analysis, in vitro differentiation assays, mixed lymphocyte reaction, and a model of ischemic kidney injury, this study sought to identify and characterize multipotent organ stem/progenitor cells in the adult kidney. Herein is reported the existence of nontubular cells that express stem cell antigen-1 (Sca-1). This population of small cells includes a CD45-negative fraction that lacks hematopoietic stem cell and lineage markers and resides in the renal interstitial space. In addition, these cells are enriched for beta1-integrin, are cytokeratin negative, and show minimal expression of surface markers that typically are found on bone marrow-derived mesenchymal stem cells. Global gene profiling reveals enrichment for many genes downstream of developmental signaling molecules and self-renewal pathways, such as TGF-beta/bone morphogenic protein, Wnt, or fibroblast growth factor, as well as for those that are involved in specification of mesodermal lineages (myocyte enhancer factor 2A, YY1-associated factor 2, and filamin-beta). In vitro, they are plastic adherent and slowly proliferating and result in inhibition of alloreactive CD8(+) T cells, indicative of an immune-privileged behavior. Furthermore, clonal-derived lines can be differentiated into myogenic, osteogenic, adipogenic, and neural lineages. Finally, when injected directly into the renal parenchyma, shortly after ischemic/reperfusion injury, renal Sca-1(+)Lin(-) cells, derived from ROSA26 reporter mice, adopt a tubular phenotype and potentially could contribute to kidney repair. These data define a unique phenotype for adult kidney-derived cells, which have potential as stem cells and may contribute to the regeneration of injured kidneys.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Embryonic pig pancreatic tissue for the treatment of diabetes in a nonhuman primate model

Gil Hecht; Smadar Eventov-Friedman; Chava Rosen; Elias Shezen; Dalit Tchorsh; Anna Aronovich; Enrique Freud; Hana Golan; Ronit Elhasid; Helena Katchman; Bernhard J. Hering; Amnon Zung; Zipi Kra-Oz; Pninit Shaked-Mishan; Alex Yusim; Alex Shtabsky; Pavel Idelevitch; Ana Tobar; Alon Harmelin; Esther Bachar-Lustig; Yair Reisner

Xenotransplantation of pig tissues has great potential to overcome the shortage of organ donors. One approach to address the vigorous immune rejection associated with xenotransplants is the use of embryonic precursor tissue, which induces and utilizes host vasculature upon its growth and development. Recently, we showed in mice that embryonic pig pancreatic tissue from embryonic day 42 (E42) exhibits optimal properties as a β cell replacement therapy. We now demonstrate the proof of concept in 2 diabetic Cynomolgus monkeys, followed for 393 and 280 days, respectively. A marked reduction of exogenous insulin requirement was noted by the fourth month after transplantation, reaching complete independence from exogenous insulin during the fifth month after transplantation, with full physiological control of blood glucose levels. The porcine origin of insulin was documented by a radioimmunoassay specific for porcine C-peptide. Furthermore, the growing tissue was found to be predominantly vascularized with host blood vessels, thereby evading hyperacute or acute rejection, which could potentially be mediated by preexisting anti-pig antibodies. Durable graft protection was achieved, and most of the late complications could be attributed to the immunosuppressive protocol. While fine tuning of immune suppression, tissue dose, and implantation techniques are still required, our results demonstrate that porcine E-42 embryonic pancreatic tissue can normalize blood glucose levels in primates. Its long-term proliferative capacity, its revascularization by host endothelium, and its reduced immunogenicity, strongly suggest that this approach could offer an attractive replacement therapy for diabetes.


PLOS Medicine | 2006

Embryonic Pig Pancreatic Tissue Transplantation for the Treatment of Diabetes

Smadar Eventov-Friedman; Dalit Tchorsh; Helena Katchman; Elias Shezen; Anna Aronovich; Gil Hecht; Benjamin Dekel; Gideon Rechavi; Bruce R. Blazar; Ilan Feine; Orna Tal; Enrique Freud; Yair Reisner

Background Transplantation of embryonic pig pancreatic tissue as a source of insulin has been suggested for the cure of diabetes. However, previous limited clinical trials failed in their attempts to treat diabetic patients by transplantation of advanced gestational age porcine embryonic pancreas. In the present study we examined growth potential, functionality, and immunogenicity of pig embryonic pancreatic tissue harvested at different gestational ages. Methods and Findings Implantation of embryonic pig pancreatic tissues of different gestational ages in SCID mice reveals that embryonic day 42 (E42) pig pancreas can enable a massive growth of pig islets for prolonged periods and restore normoglycemia in diabetic mice. Furthermore, both direct and indirect T cell rejection responses to the xenogeneic tissue demonstrated that E42 tissue, in comparison to E56 or later embryonic tissues, exhibits markedly reduced immunogenicity. Finally, fully immunocompetent diabetic mice grafted with the E42 pig pancreatic tissue and treated with an immunosuppression protocol comprising CTLA4-Ig and anti–CD40 ligand (anti-CD40L) attained normal blood glucose levels, eliminating the need for insulin. Conclusions These results emphasize the importance of selecting embryonic tissue of the correct gestational age for optimal growth and function and for reduced immunogenicity, and provide a proof of principle for the therapeutic potential of E42 embryonic pig pancreatic tissue transplantation in diabetes.


Stem Cells | 2006

Transplantation of Human Hematopoietic Stem Cells into Ischemic and Growing Kidneys Suggests a Role in Vasculogenesis but Not Tubulogenesis

Benjamin Dekel; Elias Shezen; Smadar Eventov-Friedman; Helena Katchman; Raanan Margalit; Arnon Nagler; Yair Reisner

Transplantation of murine bone marrow‐derived stem cells has been reported recently to promote regeneration of the injured kidney. We investigated the potential of human adult CD34+ progenitor cells to undergo renal differentiation once xenotransplanted into ischemic and developing kidneys. Immunostaining with human‐specific antibodies for tubular cells (broad‐spectrum cytokeratin), endothelial cells (CD31, PECAM), stromal cells (vimentin), and hematopoietic cells (pan‐leukocyte CD45) demonstrated that although kidney ischemia enhanced engraftment of human cells, they were mostly hematopoietic cells (CD45+) residing in the interstitial spaces. Few other engrafted cells demonstrated an endothelial phenotype (human CD31+in morphologically appearing peritubular capillaries), but no evidence of tubular or stromal cells of human origin was found. Upregulation of SDF1 and HIF1 transcript levels in the ischemic kidneys might explain the diffuse engraftment of CD45+cells following injury. Similarly, when embryonic kidneys rudiments were co‐transplanted with human CD34+cells in mice, we found both human CD45+and CD31+cells in the periphery of the developing renal grafts, whereas parenchymal elements failed to stain. In addition, human CD34+cells had no effect on kidney growth and differentiation. This first demonstration of human CD34+stem cell transplantation into injured and developing kidneys indicates that these cells do not readily acquire a tubular phenotype and are restricted mainly to hematopoietic and, to a lesser extent, to endothelial lineages. Efforts should be made to identify additional stem cell sources applicable for kidney growth and regeneration.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Correction of hemophilia as a proof of concept for treatment of monogenic diseases by fetal spleen transplantation

Anna Aronovich; Dalit Tchorsh; Helena Katchman; Smadar Eventov-Friedman; Elias Shezen; Uri Martinowitz; Bruce R. Blazar; Sivan Cohen; Orna Tal; Yair Reisner

Previous clinical attempts to correct genetic deficiencies such as hemophilia or Gaucher disease by transplantation of allogeneic spleen were associated with aggressive graft versus host disease, mediated by mature T cells derived from the donor spleen. We show that a fetal pig spleen harvested at the embryonic day 42 stage, before the appearance of T cells, exhibited optimal growth potential upon transplantation into SCID mice, and the growing tissue expressed factor VIII. Transplantation of embryonic day 42 spleen tissue into hemophilic SCID mice led to complete alleviation of hemophilia within 2–3 months after transplant, as demonstrated by tail bleeding and by assays for factor VIII blood levels. These results provide a proof of principle to the concept that transplantation of a fetal spleen, obtained from a developmental stage before the appearance of T cells, could provide a novel treatment modality for genetic deficiencies of an enzyme or a factor that can be replaced by the growing spleen tissue.


Diabetes | 2009

Pig Embryonic Pancreatic Tissue as a Source for Transplantation in Diabetes: Transient Treatment With Anti-LFA1, Anti-CD48, and FTY720 Enables Long-Term Graft Maintenance in Mice With Only Mild Ongoing Immunosuppression

Dalit Tchorsh-Yutsis; Gil Hecht; Anna Aronovich; Elias Shezen; Yael Zlotnikov Klionsky; Chava Rosen; Rivka Bitcover; Smadar Eventov-Friedman; Helena Katchman; Sivan Cohen; Orna Tal; Oren Milstein; Hideo Yagita; Bruce R. Blazar; Yair Reisner

OBJECTIVE Defining an optimal costimulatory blockade–based immune suppression protocol enabling engraftment and functional development of E42 pig embryonic pancreatic tissue in mice. RESEARCH DESIGN AND METHODS Considering that anti-CD40L was found to be thrombotic in humans, we sought to test alternative costimulatory blockade agents already in clinical use, including CTLA4-Ig, anti-LFA1, and anti-CD48. These agents were tested in conjunction with T-cell debulking by anti-CD4 and anti-CD8 antibodies or with conventional immunosuppressive drugs. Engraftment and functional development of E42 pig pancreatic tissue was monitored by immunohistology and by measuring pig insulin blood levels. RESULTS Fetal pig pancreatic tissue harvested at E42, or even as early as at E28, was fiercely rejected in C57BL/6 mice and in Lewis rats. A novel immune suppression comprising anti-LFA1, anti-CD48, and FTY720 afforded optimal growth and functional development. Cessation of treatment with anti-LFA1 and anti-CD48 at 3 months posttransplant did not lead to graft rejection, and graft maintenance could be achieved for >8 months with twice-weekly low-dose FTY720 treatment. These grafts exhibited normal morphology and were functional, as revealed by the high pig insulin blood levels in the transplanted mice and by the ability of the recipients to resist alloxan induced diabetes. CONCLUSIONS This novel protocol, comprising agents that simulate those approved for clinical use, offer an attractive approach for embryonic xenogeneic transplantation. Further studies in nonhuman primates are warranted.


Stem Cells | 2008

Embryonic Porcine Liver as a Source for Transplantation: Advantage of Intact Liver Implants over Isolated Hepatoblasts in Overcoming Homeostatic Inhibition by the Quiescent Host Liver

Helena Katchman; Orna Tal; Smadar Eventov-Friedman; Elias Shezen; Anna Aronovich; Dalit Tchorsh; Sivan Cohen; Alexander Shtabsky; Gil Hecht; Benjamin Dekel; Enrique Freud; Yair Reisner

Cell therapy as an alternative to orthotopic liver transplantation represents a major challenge, since negligible proliferation of isolated hepatocytes occurs after transplantation because of the stringent homeostatic control displayed by the host liver. Thus, different modalities of liver injury as part of the pretransplant conditioning are a prerequisite for this approach. The major objective of the present study was to test whether xenotransplantation of pig fetal liver fragments, in which potential cell‐cell and cell‐stroma interactions are spared, might afford more robust growth and proliferation compared with isolated pig fetal hepatoblasts. After transplantation into SCID mice, fetal liver tissue fragments exhibited marked growth and proliferation, in the setting of a quiescent host liver, compared with isolated fetal hepatoblasts harvested at the same gestational age (embryonic day 28). The proliferative advantage of fetal pig liver fragments was clearly demonstrated by immunohistochemical and morphometric assays and was observed not only after implantation into the liver but also into extrahepatic sites, such as the spleen and the subrenal capsule. The presence of all types of nonparenchymal liver cells that is crucial for normal liver development and regeneration was demonstrated in the implants. Preservation of the three‐dimensional structure in pig fetal liver fragments enables autonomous proliferation of transplanted hepatic cells in the setting of a quiescent host liver, without any requirement for liver injury in the pretransplant conditioning. The marked proliferation and functional maturation exhibited by the pig fetal liver fragments suggests that it could afford a preferable source for transplantation.


Transplantation | 2010

Embryonic pig pancreatic tissue for the treatment of diabetes: potential role of immune suppression with "off-the-shelf" third-party regulatory T cells.

Dalit Tchorsh-Yutsis; Yael Zlotnikov Klionsky; Esther Bachar-Lustig; Anna Aronovich; Ilan Feine; Elias Shezen; Chava Rosen; Rivka Bitcover; Smadar Eventov-Friedman; Helena Katchman; Lior Zangi; Orna Tal; Sivan Cohen; Yair Reisner

Background. Xenogeneic embryonic pancreatic tissue can provide an attractive alternative for organ replacement therapy. However, immunological rejection represents a major obstacle. This study examines the potential of regulatory T cells (Tregs) in the prevention of E42 pancreas rejection. Methods. To develop new approaches to combat rejection, we evaluated engraftment, growth, and development of E42 pig pancreatic tissue in mice treated with ex vivo expanded Tregs in combination with T-cell debulking and the conventional immunosuppressive drugs, rapamycin and FTY720. Results. Transplantation of E42 pig pancreas into C57BL/6 mice immunosuppressed by this protocol resulted in complete rejection within less than 6 weeks. In contrast, additional treatment with a single infusion of ex vivo expanded third-party Tregs markedly delayed the onset of graft rejection to 10 weeks. The infusion of Tregs was associated with a significant reduction in CD4+ and CD8+ expansion in the lymph nodes and other peripheral organs at the priming stages after implantation. Freezing and thawing of the Tregs did not affect their efficacy, indicating the potential of Tregs banking. Conclusion. Considering the technical difficulties encountered in the generation of Tregs from patients or from specific donors, our results demonstrate the feasibility of using “off-the-shelf” fresh or frozen third-party Tregs to control rejection in organ transplantation.


PLOS ONE | 2009

Enhancement of Pig Embryonic Implants in Factor VIII KO Mice: A Novel Role for the Coagulation Cascade in Organ Size Control

Anna Aronovich; Dalit Tchorsh; Elias Shezen; Chava Rosen; Yael Zlotnikov Klionsky; Sivan Cohen; Orna Tal; Uri Martinowitz; Helena Katchman; Smadar Eventov-Friedman; Ninette Amariglio; Jasmine Jacob-Hirsch; Gideon Rechavi; Yair Reisner

Very little is known about the mechanisms that contribute to organ size differences between species. In the present study, we used a mouse model of embryonic pig tissue implantation to define the role of host Factor VIII in controlling the final size attained by the implant. We show here that pig embryonic spleen, pancreas, and liver all grow to an increased size in mice that are deficient in the Factor VIII clotting cascade. Similar results were obtained using the transplantation model after treatment with the low molecular weight heparin derivative Clexane which markedly enhanced transplant size. Likewise, enhanced size was found upon treatment with the direct thrombin inhibitor Dabigatran, suggesting that organ size regulation might be mediated by thrombin, downstream of Factor VIII. Considering that thrombin was shown to mediate various functions unrelated to blood clotting, either directly by cleavage of protease-activated receptors (PARs) or indirectly by cleaving osteopontin (OPN) on stroma cells, the role of PAR1 and PAR4 antagonists as well as treatment with cleaved form of OPN (tcOPN) were tested. While the former was not found to have an impact on overgrowth of embryonic pig spleen implants, marked reduction of size was noted upon treatment with the (tcOPN). Collectively, our surprising set of observations suggests that factors of the coagulation cascade have a novel role in organ size control.

Collaboration


Dive into the Helena Katchman's collaboration.

Top Co-Authors

Avatar

Yair Reisner

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Elias Shezen

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Smadar Eventov-Friedman

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Anna Aronovich

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Benjamin Dekel

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Dalit Tchorsh

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Orna Tal

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Sivan Cohen

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Chava Rosen

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Dalit Tchorsh-Yutsis

Weizmann Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge