Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Helena M. Scofano is active.

Publication


Featured researches published by Helena M. Scofano.


Biochimica et Biophysica Acta | 1979

Transient state kinetic studies of phosphorylation by ATP and Pi of the calcium-dependent ATPase from sarcoplasmic reticulum

Adalberto Vieyra; Helena M. Scofano; Horacio Guimarães-Motta; Ronald K. Tume; Leopoldo de Meis

The ATPase of the sarcoplasmic reticulum is phosphorylated by ATP in the presence of Ca2+. A rapid phosphorylation was observed when the enzyme was preincubated with Ca2+ prior to the addition of 0.1 or 1 mM ATP. The rate of phosphorylation was decreased when Ca2+ was omitted from the preincubation medium and added with ATP when the reaction was started. The rate of phosphorylation by ATP was further decreased when Pi was included in the preincubation medium without Ca2+. In this case, the enzyme was phosphorylated by Pi during the preincubation. When Ca2+ and ATP were added, a burst of phosphorylation by ATP was observed in the initial 16 ms. In the subsequent incubation intervals, the phosphorylation by ATP was synchronous with the hydrolysis of the phosphoenzyme formed by Pi. The rate of hydrolysis of the phosphoenzyme formed by Pi was measured when either the Pi concentration was decreased 10 fold, or when Ca2+, ATP or ATP plus Ca2+ was added to the medium. Upon the single addition of Ca2+, the time for half-maximal decay was in the range 500--1000 ms. In all other conditions it was in the range 70--90 ms.


Biochimica et Biophysica Acta | 2012

Identification of a crab gill FXYD2 protein and regulation of crab microsomal Na,K-ATPase activity by mammalian FXYD2 peptide

E.C.C. Silva; Douglas Chodi Masui; Rosa Prazeres Melo Furriel; John C. McNamara; Hector Barrabin; Helena M. Scofano; Jonas Perales; André Teixeira-Ferreira; Francisco A. Leone; Carlos Frederico Leite Fontes

This investigation discloses the recognition of an FXYD2 protein in a microsomal Na,K-ATPase preparation from the posterior gills of the blue crab, Callinectes danae, by a mammalian (rabbit) FXYD2 peptide specific antibody (γC(33)) and MALDI-TOF-TOF mass spectrometry techniques. This is the first demonstration of an invertebrate FXYD2 protein. The addition of exogenous pig FXYD2 peptide to the crab gill microsomal fraction stimulated Na,K-ATPase activity in a dose-dependent manner. Exogenous pig FXYD2 also considerably increased enzyme affinity for K(+), ATP and NH(4)(+). K(0.5) for Na(+) was unaffected. Exogenous pig FXYD2 increased the V(max) for stimulation of gill Na,K-ATPase activity by Na(+), K(+) and ATP, by 30% to 40%. The crab gill FXYD2 is phosphorylated by PKA, suggesting a regulatory function similar to that known for the mammalian enzyme. The PKA-phosphorylated pig FXYD2 peptide stimulated the crab gill Na,K-ATPase activity by 80%, about 2-fold greater than did the non-phosphorylated peptide. Stimulation by the PKC-phosphorylated pig FXYD2 peptide was minimal. These findings confirm the presence of an FXYD2 peptide in the crab gill Na,K-ATPase and demonstrate that this peptide plays an important role in regulating enzyme activity.


Archives of Biochemistry and Biophysics | 2008

The crustacean gill (Na + ,K + )-ATPase: Allosteric modulation of high- and low-affinity ATP-binding sites by sodium and potassium

D.C. Masui; E.C.C. Silva; Fernando L. Mantelatto; John C. McNamara; Hector Barrabin; Helena M. Scofano; Carlos Frederico Leite Fontes; Rosa Prazeres Melo Furriel; Francisco A. Leone

The blue crab, Callinectes danae, tolerates exposure to a wide salinity range employing mechanisms of compensatory ion uptake when in dilute media. Although the gill (Na+,K+)-ATPase is vital to hyperosmoregulatory ability, the interactions occurring at the sites of ATP binding on the molecule itself are unknown. Here, we investigate the modulation by Na+ and K+ of homotropic interactions between the ATP-binding sites, and of phosphoenzyme formation of the (Na+,K+)-ATPase from the posterior gills of this euryhaline crab. The contribution of the high- and low-affinity ATP-binding sites to maximum velocity was similar for both Na+ and K+. However, in contrast to Na+, a threshold K+ concentration triggers the appearance of the high-affinity binding sites, displacing the saturation curve to lower ATP concentrations.Further, a low-affinity site for phosphorylation is present on the enzyme. These findings reveal notable differences in the catalytic mechanism of the crustacean (Na+,K+)-ATPase compared to the vertebrate enzyme.


Biochimica et Biophysica Acta | 1992

The role of Mg2+ and K+ in the phosphorylation of Na+,K+-ATPase by ATP in the presence of dimethylsulfoxide but in the absence of Na+

Carlos Frederico Leite Fontes; Hector Barrabin; Helena M. Scofano; Jens G. Nørby

We have previously demonstrated that Na+,K(+)-ATPase can be phosphorylated by 100 microM ATP and 5 mM Mg2+ and in the absence of Na+, provided that 40% dimethylsulfoxide (Me2SO) is present. Phosphorylation was stimulated by K+ up to a steady-state level of about 50% of Etot (Barrabin et al. (1990) Biochim. Biophys. Acta 1023, 266-273). Here we describe the time-course of phosphointermediate (EP) formation and of dephosphorylation of EP at concentrations of Mg2+ from 0.1 to 5000 microM and of K+ from 0.01 to 100 mM. The results were simulated by a simplified version of the commonly accepted Albers-Post model, i.e. a 3-step reaction scheme with a phosphorylation, a dephosphorylation and an isomerization/deocclusion step. Furthermore it was necessary to include an a priori, Mg(2+)- and K(+)-independent, equilibration between two enzyme forms, only one of which (constituting 14% of Etot) reacted directly with ATP. The role of Mg(2+) was two-fold: At low Mg2+, phosphorylation was stimulated by Mg2+ due to formation of the substrate MgATP, whereas at higher concentrations it acted as an inhibitor at all three steps. The affinity for the inhibitory Mg(2+)-binding was increased several-fold, relative to that in aqueous media, by dimethylsulfoxide. K+ stimulated dephosphorylation at all Mg(2+)-concentrations, but at high, inhibitory [Mg2+], K+ also stimulated the phosphorylation reaction, increasing both the rate coefficient and the steady-state level of EP. Generally, the presence of Me2SO seems to inhibit the dephosphorylation step, the isomerization/deocclusion step, and to a lesser extent (if at all) the phosphorylation reaction, and we discuss whether this reflects that Me2SO stabilizes occluded conformations of the enzyme even in the absence of monovalent cations. The results confirm and elucidate the stimulating effect of K+ on EP formation from ATP in the absence of Na+, but they leave open the question of the molecular mechanism by which Me2SO, inhibitory Mg2+ and stimulating K+ interact with the Na+,K(+)-ATPase.


Biochimica et Biophysica Acta | 1997

Pseudosubstrate hydrolysis by the erythrocyte plasma membrane Ca2+-ATPase: kinetic evidence for a modified E1 conformation in dimethylsulfoxide

Monica M. Freire; Paulo C. Carvalho-Alves; Hector Barrabin; Helena M. Scofano

The purified Ca(2+)-ATPase of pig red cells displays a phosphatase activity towards p-nitrophenylphosphate which is inhibited by Ca2+ in the absence of solvents, and activated by calmodulin. This activity has been attributed to the E2 conformation of the enzyme. Here we show that the pNPPase activity in the absence of Ca2+ is stimulated 10-25-fold by the presence of the organic solvent dimethylsulfoxide (Me2SO). This is an activation that surpasses by severalfold that induced by calmodulin in the absence of the solvent. At 30% Me2SO, activation by calmodulin disappears. In the absence of calmodulin and at pH 7.2, the Ca2+ concentration needed for half-maximal inhibition of the pNPPase activity (K1) increases from 130 microM in the absence of Me2SO to 860 microM at 30% Me2SO. This effect of Me2SO is enhanced at pH 8.0: the K for Ca2+ increases from 2.7 microM in the absence of the solvent to 2.0 mM in its presence. However, the K0.5 for Ca2+ activation of the ATPase activity decreases from 8.3 to 2.6 microM following addition of the same Me2SO concentration. This indicates that, even in the presence of Me2SO, microM Ca2+ concentrations shift the equilibrium towards E1 but the decrease in activity that would be expected if pNPP hydrolysis were catalysed exclusively by the E2 conformation is not observed. The affinity for pNPP as a substrate increases from 2.6 mM in the absence of Me2SO to 1.6 mM in the presence of 20% Me2SO. These results suggest that Me2SO induces multiple effects in the Ca(2+)-ATPase that (i) increase the reactivity of E2 towards substrate: (ii) surpass the activation by calmodulin and, (iii) allow the enzyme to hydrolyze pNPP even when Ca2+ is bound to the high-affinity sites of the enzyme. The change in reactivity is attributed to an increase on substrate catalysis rather than on pNPP binding.


Biochimica et Biophysica Acta | 1990

Phosphorylation of Na+,K+-ATPase by ATP in the presence of K+ and dimethylsulfoxide but in the absence of NA+

Hector Barrabin; Carlos Frederico Leite Fontes; Helena M. Scofano; Jens G. Nørby

Purified Na+, K(+)-ATPase was phosphorylated by [gamma-32P]ATP in a medium containing dimethylsulfoxide and 5 mM Mg2+ in the absence of Na+ and K+. Addition of K+ increased the phosphorylation levels from 0.4 nmol phosphoenzyme/mg of protein in the absence of K+ to 1.0 nmol phosphoenzyme/mg of protein in the presence of 0.5 mM K+. Higher velocities of enzyme phosphorylation were observed in the presence of 0.5 mM K+. Increasing K+ concentrations up to 100 mM lead to a progressive decrease in the phosphoenzyme (EP) levels. Control experiments, that were performed to determine the contribution to EP formation from the Pi inevitably present in the assays, showed that this contribution was of minor importance except at high (20-100 mM) KCl concentrations. The pattern of EP formation and its KCl dependence is thus characteristic for the phosphorylation of the enzyme by ATP. In the absence of Na+ and with 0.5 mM K+, optimal levels (1.0 nmol EP/mg of protein) were observed at 20-40% dimethylsulfoxide and pH 6.0 to 7.5. Addition of Na+ up to 5 mM has no effect on the phosphoenzyme level under these conditions. At 100 mM Na+ or higher the full capacity of enzyme phosphorylation (2.2 nmol EP/mg of protein) was reached. Phosphoenzyme formed from ATP in the absence of Na+ is an acylphosphate-type compound as shown by its hydroxylamine sensitivity. The phosphate radioactivity was incorporated into the alpha-subunit of the Na+, K(+)-ATPase as demonstrated by acid polyacrylamide gel electrophoresis followed by autoradiography.


Biochimica et Biophysica Acta | 1990

Isolation and characterization of the Mg2+-ATPase from rabbit skeletal muscle sarcoplasmic reticulum membrane preparations

Ana Paula Valente; Hector Barrabin; R.V Jorge; M.C Paes; Helena M. Scofano

Preparations of sarcoplasmic reticulum vesicles, obtained according to the method of Eletr and Inesi (Biochim. Biophys. Acta (1972) 282, 174), contained both Mg2(+)-ATPase and Ca2+, Mg2(+)-ATPase activity. The two enzymes were solubilized by a mixture of digitonin and lysophosphatidylcholine and separated on a DEAE-cellulose column eluted with a discontinuous gradient of NaCl. The Mg2(+)-ATPase activity was eluted with 0.43 M NaCl. The Ca2+,Mg2(+)-ATPase was obtained by increasing the NaCl concentration of the elution medium to 0.40 M. The fraction eluted with 0.043 M NaCl was insensitive to micromolar concentrations of calcium, resistant to oligomycin, ouabain, orthovanadate and thiocyanate, and was inhibited by low concentrations of Triton X-100. The enzyme showed a single apparent Km for MgATP in the range of 0.2 mM and a Vm of 2.9 mumol Pi.min-1.mg-1 protein. Activity was maximal over a broad peak between pH 6.0-8.0. Hydrolysis of ATP was unaffected by dimethylsulfoxide concentrations up to 20% (v/v) and was inhibited at higher concentrations. The enzyme was not phosphorylated by either 32Pi or [gamma-32P]ATP at significant levels when compared with the Ca2+,Mg2(+)-ATPase in an EGTA-containing medium. The kinetic pattern of the Mg2(+)-ATPase was distinctly different from that of the Ca2+,Mg2(+)-ATPase under the same conditions. The fraction eluted from the DEAE-cellulose column was subjected to electrophoresis under non-denaturing conditions. Only one band with Mg2(+)-ATPase activity was detected. The Mg2(+)-ATPase migrated much slower than the Ca2+,Mg2(+)-ATPase under non-denaturing conditions, whereas both enzymes had a molecular mass of 105 kDa on SDS gel electrophoresis.


Comparative Biochemistry and Physiology B | 2008

Regulation by the exogenous polyamine spermidine of Na,K-ATPase activity from the gills of the euryhaline swimming crab Callinectes danae (Brachyura, Portunidae).

E.C.C. Silva; Douglas Chodi Masui; Rosa Prazeres Melo Furriel; Fernando L. Mantelatto; John C. McNamara; H. Barrabin; Francisco A. Leone; Helena M. Scofano; C.F.L. Fontes

Euryhaline crustaceans rarely hyporegulates and employ the driving force of the Na,K-ATPase, located at the basal surface of the gill epithelium, to maintain their hemolymph osmolality within a range compatible with cell function during hyper-regulation. Since polyamine levels increase during the adaptation of crustaceans to hyperosmotic media, we investigate the effect of exogenous polyamines on Na,K-ATPase activity in the posterior gills of Callinectes danae, a euryhaline swimming crab. Polyamine inhibition was dependent on cation concentration, charge and size in the following order: spermine>spermidine>putrescine. Spermidine affected K(0.5) values for Na(+) with minor alterations in K(0.5) values for K(+) and NH(4)(+), causing a decrease in maximal velocities under saturating Na(+), K(+) and NH(4)(+) concentrations. Phosphorylation measurements in the presence of 20 microM ATP revealed that the Na,K-ATPase possesses a high affinity site for this substrate. In the presence of 10 mM Na(+), both spermidine and spermine inhibited formation of the phosphoenzyme; however, in the presence of 100 mM Na(+), the addition of these polyamines allowed accumulation of the phosphoenzyme. The polyamines inhibited pumping activity, both by competing with Na(+) at the Na(+)-binding site, and by inhibiting enzyme dephosphorylation. These findings suggest that polyamine-induced inhibition of Na,K-ATPase activity may be physiologically relevant during migration to fully marine environments.


Biochimica et Biophysica Acta | 1995

The effect of di]methylsulfoxide on the substrate site of Na+/K+-ATPase studied through phosphorylation by inorganic phosphate and ouabain binding

Carlos Frederico Leite Fontes; Helena M. Scofano; Hector Barrabin; Jens G. Nørby

To obtain further information on the role of H2O at the substrate site of Na+/K(+)-ATPase, we have studied the enzymes reaction with P(i) and ouabain in 40% (v/v) Me2SO (dimethylsulfoxide). When the enzyme (E) was incubated with ouabain (O) for 5 min in a 40% (v/v) Me2SO-medium with 5 mM MgCl2 and 0.5 mM KCl (but no phosphate), ouabain was bound (as EO). Subsequent incubation with P(i) showed that E, but not EO, was rapidly phosphorylated (to EP). Long-time phosphorylation revealed that EO is also phosphorylated by P(i) albeit very slowly (t1/2 about 60 min) and that binding of ouabain to EP also is very slow. The EOP complex is stable, i.e., the t1/2 for the loss of P(i) is >> 60 min in contrast to about 1 min in water. These results in 40% Me2SO are distinctly different from what would be obtained in a watery milieu: ouabain would bind slowly and inefficiently in the absence of P(i), and ouabain would catalyse phosphorylation from P(i) rather than retard it. Equilibrium binding of [3H]ouabain to E and EP in water or 40% Me2SO confirmed these observations: Kdiss in water is 11 microM and 12 nM for EO and EOP, respectively, whereas in Me2SO they are 112 nM and 48 nM. It is suggested that the primary effect of the lowered water activity in 40% Me2SO is a rearrangement of the substrate site so that it also in the absence of P(i) attains a transition state configuration corresponding to the phosphorylated conformation. This would be sensed by the ouabain binding site and lead to high affinity ouabain binding in the absence of P(i).


Journal of Molecular and Cellular Cardiology | 1992

Regulation of the nucleotide dependence of the cardiac sarcolemma Ca2+-ATPase

T.C. Pasa; Angela de S. Otero; Hector Barrabin; Helena M. Scofano

The nucleotide dependence of the Ca(2+)-ATPase purified from cardiac sarcolemma by calmodulin-affinity chromatography was investigated for preparations either in the basal state or activated by three procedures: (i) addition of calmodulin; (ii) addition of phosphatidylserine and (iii) controlled proteolysis. Upon activation, the maximal velocity of ATP hydrolysis increases by a factor of 4-5, while the curves of ATP dependence of ATP hydrolysis change from hyperbolic to biphasic, revealing the presence of two Kmapp for ATP. A tight coupling between Ca2+ and ATP binding sites was also observed. At high ATP concentration, the ATPase activity of the basal state shows a complex dependence on Ca2+ concentration, increasing sharply at millimolar Ca2+. Our results indicate that this increase in ATPase activity is paralleled by the appearance of a second, low affinity Kmapp for ATP. When only the high affinity site for ATP is occupied the ATPase activity of the basal state displays a simple, hyperbolic dependence on the Ca2+ concentration. In addition, increasing Ca2+ concentration appears to decrease the ATP binding at the low affinity site of the enzyme. The effect of ADP on ATP hydrolysis was also examined. The finding that ADP is a potent inhibitor of the purified Ca(2+)-ATPase from heart suggests that the stimulatory action of ADP observed in cardiac sarcolemmal vesicles is not an intrinsic property of the enzyme.

Collaboration


Dive into the Helena M. Scofano's collaboration.

Top Co-Authors

Avatar

Hector Barrabin

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Julio A. Mignaco

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Carlos Frederico Leite Fontes

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Monica M. Freire

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Paulo C. Carvalho-Alves

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

E.C.C. Silva

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manuela O. Souza

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Giuseppe Inesi

California Pacific Medical Center

View shared research outputs
Top Co-Authors

Avatar

Antonio Ferreira-Pereira

Federal University of Rio de Janeiro

View shared research outputs
Researchain Logo
Decentralizing Knowledge