Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Helena Orozco is active.

Publication


Featured researches published by Helena Orozco.


Microbial Cell Factories | 2013

Genetic manipulation of longevity-related genes as a tool to regulate yeast life span and metabolite production during winemaking

Helena Orozco; Emilia Matallana; Agustín Aranda

BackgroundYeast viability and vitality are essential for different industrial processes where the yeast Saccharomyces cerevisiae is used as a biotechnological tool. Therefore, the decline of yeast biological functions during aging may compromise their successful biotechnological use. Life span is controlled by a variety of molecular mechanisms, many of which are connected to stress tolerance and genomic stability, although the metabolic status of a cell has proven a main factor affecting its longevity. Acetic acid and ethanol accumulation shorten chronological life span (CLS), while glycerol extends it.ResultsDifferent age-related gene classes have been modified by deletion or overexpression to test their role in longevity and metabolism. Overexpression of histone deacetylase SIR2 extends CLS and reduces acetate production, while overexpression of SIR2 homolog HST3 shortens CLS, increases the ethanol level, and reduces acetic acid production. HST3 overexpression also enhances ethanol tolerance. Increasing tolerance to oxidative stress by superoxide dismutase SOD2 overexpression has only a moderate positive effect on CLS. CLS during grape juice fermentation has also been studied for mutants on several mRNA binding proteins that are regulators of gene expression at the posttranscriptional level; we found that NGR1 and UTH4 deletions decrease CLS, while PUF3 and PUB1 deletions increase it. Besides, the pub1 Δ mutation increases glycerol production and blocks stress granule formation during grape juice fermentation. Surprisingly, factors relating to apoptosis, such as caspase Yca1 or apoptosis-inducing factor Aif1, play a positive role in yeast longevity during winemaking as their deletions shorten CLS.ConclusionsManipulation of regulators of gene expression at both transcriptional (i.e., sirtuins) and posttranscriptional (i.e., mRNA binding protein Pub1) levels allows to modulate yeast life span during its biotechnological use. Due to links between aging and metabolism, it also influences the production profile of metabolites of industrial relevance.


Nucleic Acids Research | 2007

Epigenetic disruption of ribosomal RNA genes and nucleolar architecture in DNA methyltransferase 1 (Dnmt1) deficient cells

Jesús Espada; Esteban Ballestar; Raffaella Santoro; Mario F. Fraga; Ana Villar-Garea; Attila Németh; Lidia Lopez-Serra; Santiago Ropero; Agustín Aranda; Helena Orozco; Vanessa Moreno; Angeles Juarranz; Juan C. Stockert; Gernot Längst; Ingrid Grummt; Wendy A. Bickmore; Manel Esteller

The nucleolus is the site of ribosome synthesis in the nucleus, whose integrity is essential. Epigenetic mechanisms are thought to regulate the activity of the ribosomal RNA (rRNA) gene copies, which are part of the nucleolus. Here we show that human cells lacking DNA methyltransferase 1 (Dnmt1), but not Dnmt33b, have a loss of DNA methylation and an increase in the acetylation level of lysine 16 histone H4 at the rRNA genes. Interestingly, we observed that SirT1, a NAD+-dependent histone deacetylase with a preference for lysine 16 H4, interacts with Dnmt1; and SirT1 recruitment to the rRNA genes is abrogated in Dnmt1 knockout cells. The DNA methylation and chromatin changes at ribosomal DNA observed are associated with a structurally disorganized nucleolus, which is fragmented into small nuclear masses. Prominent nucleolar proteins, such as Fibrillarin and Ki-67, and the rRNA genes are scattered throughout the nucleus in Dnmt1 deficient cells. These findings suggest a role for Dnmt1 as an epigenetic caretaker for the maintenance of nucleolar structure.


Applied and Environmental Microbiology | 2012

Oxidative Stress Tolerance, Adenylate Cyclase, and Autophagy Are Key Players in the Chronological Life Span of Saccharomyces cerevisiae during Winemaking

Helena Orozco; Emilia Matallana; Agustín Aranda

ABSTRACT Most grape juice fermentation takes place when yeast cells are in a nondividing state called the stationary phase. Under such circumstances, we aimed to identify the genetic determinants controlling longevity, known as the chronological life span. We identified commercial strains with both short (EC1118) and long (CSM) life spans in laboratory growth medium and compared them under diverse conditions. Strain CSM shows better tolerance to stresses, including oxidative stress, in the stationary phase. This is reflected during winemaking, when this strain has an increased maximum life span. Compared to EC1118, CSM overexpresses a mitochondrial rhodanese gene-like gene, RDL2, whose deletion leads to increased reactive oxygen species production at the end of fermentation and a correlative loss of viability at this point. EC1118 shows faster growth and higher expression of glycolytic genes, and this is related to greater PKA activity due to the upregulation of the adenylate cyclase gene. This phenotype has been linked to the presence of a δ element in its promoter, whose removal increases the life span. Finally, EC1118 exhibits a higher level of protein degradation by autophagy, which might help achieve fast growth at the expense of cellular structures and may be relevant for long-term survival under winemaking conditions.


Mechanisms of Ageing and Development | 2012

Wine yeast sirtuins and Gcn5p control aging and metabolism in a natural growth medium.

Helena Orozco; Emilia Matallana; Agustín Aranda

Grape juice fermentation by wine yeast is an interesting model to understand aging under conditions closer to those in nature. Grape juice is rich in sugars and, unlike laboratory conditions, the limiting factor for yeast growth is nitrogen. We tested the effect of deleting sirtuins and several acetyltransferases to find that the role of many of these proteins during grape juice fermentation is the opposite to that under standard laboratory aging conditions using synthetic complete media. For instance, SIR2 deletion extends maximum chronological lifespan in wine yeasts grown under laboratory conditions, but shortens it in winemaking. Deletions of sirtuin HST2 and acetyltransferase GCN5 have the opposite effect to SIR2 mutation in both media. Acetic acid, a well known pro-aging compound in laboratory conditions, does not play a determinant role on aging during wine fermentation. We discovered that gcn5Δ mutant strain displays strongly increased aldehyde dehydrogenase Ald6p activity, caused by blocking of Ald6p degradation by autophagy under nitrogen limitation conditions, leading to acetic acid accumulation. We describe how nitrogen limitation and TOR inhibition extend the chronological lifespan under winemaking conditions and how the TOR-dependent control of aging partially depends on the Gcn5p function.


PLOS ONE | 2015

Interplay among Gcn5, Sch9 and Mitochondria during Chronological Aging of Wine Yeast Is Dependent on Growth Conditions

Cecilia Picazo; Helena Orozco; Emilia Matallana; Agustín Aranda

Saccharomyces cerevisiae chronological life span (CLS) is determined by a wide variety of environmental and genetic factors. Nutrient limitation without malnutrition, i.e. dietary restriction, expands CLS through the control of nutrient signaling pathways, of which TOR/Sch9 has proven to be the most relevant, particularly under nitrogen deprivation. The use of prototrophic wine yeast allows a better understanding of the role of nitrogen in longevity in natural and more demanding environments, such as grape juice fermentation. We previously showed that acetyltransferase Gcn5, a member of the SAGA complex, has opposite effects on CLS under laboratory and winemaking conditions, and is detrimental under the latter. Here we demonstrate that integrity of the SAGA complex is necessary for prolonged longevity, as its dismantling by SPT20 deletion causes a drop in CLS under both laboratory and winemaking conditions. The sch9Δ mutant is long-lived in synthetic SC medium, as expected, and the combined deletion of GCN5 partially suppresses this phenotype. However it is short-lived in grape juice, likely due to its low nitrogen/carbon ratio. Therefore, unbalance of nutrients can be more relevant for life span than total amounts of them. Deletion of RTG2, which codes for a protein associated with Gcn5 and is a component of the mitochondrial retrograde signal, and which communicates mitochondrial dysfunction to the nucleus, is detrimental under laboratory, but not under winemaking conditions, where respiration seems not so relevant for longevity. Transcription factor Rgm1 was found to be a novel CLS regulator Sch9-dependently.


Microbial Cell Factories | 2012

Two-carbon metabolites, polyphenols and vitamins influence yeast chronological life span in winemaking conditions

Helena Orozco; Emilia Matallana; Agustín Aranda

BackgroundViability in a non dividing state is referred to as chronological life span (CLS). Most grape juice fermentation happens when Saccharomyces cerevisiae yeast cells have stopped dividing; therefore, CLS is an important factor toward winemaking success.ResultsWe have studied both the physical and chemical determinants influencing yeast CLS. Low pH and heat shorten the maximum wine yeast life span, while hyperosmotic shock extends it. Ethanol plays an important negative role in aging under winemaking conditions, but additional metabolites produced by fermentative metabolism, such as acetaldehyde and acetate, have also a strong impact on longevity. Grape polyphenols quercetin and resveratrol have negative impacts on CLS under winemaking conditions, an unexpected behavior for these potential anti-oxidants. We observed that quercetin inhibits alcohol and aldehyde dehydrogenase activities, and that resveratrol performs a pro-oxidant role during grape juice fermentation. Vitamins nicotinic acid and nicotinamide are precursors of NAD+, and their addition reduces mean longevity during fermentation, suggesting a metabolic unbalance negative for CLS. Moreover, vitamin mix supplementation at the end of fermentation shortens CLS and enhances cell lysis, while amino acids increase life span.ConclusionsWine S. cerevisiae strains are able to sense changes in the environmental conditions and adapt their longevity to them. Yeast death is influenced by the conditions present at the end of wine fermentation, particularly by the concentration of two-carbon metabolites produced by the fermentative metabolism, such as ethanol, acetic acid and acetaldehyde, and also by the grape juice composition, particularly its vitamin content.


Archives of Microbiology | 2011

The Saccharomyces cerevisiae flavodoxin-like proteins Ycp4 and Rfs1 play a role in stress response and in the regulation of genes related to metabolism

Fernando Cardona; Helena Orozco; Sylvie Friant; Agustín Aranda; Marcel·lí del Olmo

SPI1 is a gene whose expression responds to many environmental stimuli, including entry into stationary phase. We have performed a screening to identify genes that activate SPI1 promoter when overexpressed. The phosphatidylinositol-4-phosphate 5-kinase gene MSS4 was identified as a positive activator of SPI1. Another SPI1 transcriptional regulator isolated was the flavodoxin-like gene YCP4. YCP4 and its homolog RFS1 regulate the expression of many genes during the late stages of growth. The double deletion mutant in YCP4 and its homolog RFS1 has an impact on gene expression related to metabolism by increasing the expression of genes involved in hexose transport and glycolysis, and decreasing expression of genes of amino acid metabolism pathways. Genes related to mating and response to pheromone show a decreased expression in the double mutant, while transcription of genes involved in translational elongation is increased. Deletion of these genes, together with the third member of the family, PST2, has a complex effect on the stress response. For instance, double mutant ycp4Δrfs1Δ has an increased response to oxidative stress, but a decreased tolerance to cell-damaging agent SDS. Additionally, this mutation affects chronological aging and slightly increases fermentative capacity.


Letters in Applied Microbiology | 2015

Mitochondria inheritance is a key factor for tolerance to dehydration in wine yeast production.

Cecilia Picazo; Esther Gamero-Sandemetrio; Helena Orozco; W. Albertin; P. Marullo; Emilia Matallana; Agustín Aranda

Mitochondria are the cells powerhouse when organisms are grown in the presence of oxygen. They are also the source of reactive oxygen species that cause damage to the biochemical components of the cell and lead to cellular ageing and death. Under winemaking conditions, Saccharomyces yeasts exclusively have a fermentative metabolism due to the high sugar content of grape must. However, their production as an active dry yeast (ADY) form required aerobic propagation and a dehydration process. In these industrial steps, oxidative stress is particularly harmful for the cell. In this work, we analysed the impact of the mitochondrial genome on oxidative stress response, longevity and dehydration tolerance using the synthetic interspecific hybrids obtained between two S. cerevisiae and S. uvarum strains. The isogenic nature of nuclear DNA of such hybrids allowed us to analyse the impact of mitochondrial DNA for fermentative and oxidative stress conditions. Under grape must conditions, the inheritance of mitochondrial DNA poorly impacted the fermentative performance of interspecific hybrids, unlike the hybrids with S. cerevisiae mitochondrial inheritance, which displayed increased tolerance to oxidative stress and dehydration, and showed an extended chronological longevity when cells were grown with aeration.


Fems Yeast Research | 2014

Acetyltransferase SAS2 and sirtuin SIR2, respectively, control flocculation and biofilm formation in wine yeast

Mar ıa E. Rodriguez; Helena Orozco; Jes us M. Cantoral; Emilia Matallana; Agust ın Aranda

Cell-to-cell and cell-to-environment interactions of microorganisms are of substantial relevance for their biotechnological use. In the yeast Saccharomyces cerevisiae, flocculation can be an advantage to clarify final liquid products after fermentation, and biofilm formation may be relevant for the encapsulation of strains of interest. The adhesion properties of wine yeast strains can be modified by the genetic manipulation of transcriptional regulatory proteins, such as histone deacetylases, and acetylases. Sirtuin SIR2 is essential for the formation of mat structures, a kind of biofilm that requires the expression of cell-wall protein FLO11 as its deletion reduces FLO11 expression, and adhesion of cells to themselves and to agar in a commercial wine strain. Deletion of acetyltransferase GCN5 leads to a similar phenotype. A naturally flocculant wine yeast strain called P2 was characterized. Its flocculation happens only during grape juice fermentation and is due to the presence of a highly transcribed version of flocculin FLO5, linked to the presence of a δ sequence in the promoter. Deletion of acetyltransferase SAS2 enhances this phenotype and maltose fermentation even more. Therefore, the manipulation of acetylation/deacetylation machinery members is a valid way to alter the interaction of industrial yeast to their environment.


Applied Microbiology and Biotechnology | 2016

RNA binding protein Pub1p regulates glycerol production and stress tolerance by controlling Gpd1p activity during winemaking

Helena Orozco; Ana Sepúlveda; Cecilia Picazo; Emilia Matallana; Agustín Aranda

Glycerol is a key yeast metabolite in winemaking because it contributes to improve the organoleptic properties of wine. It is also a cellular protective molecule that enhances the tolerance of yeasts to osmotic stress and promotes longevity. Thus, its production increases by genetic manipulation, which is of biotechnological and basic interest. Glycerol is produced by diverting glycolytic glyceraldehyde-3-phosphate through the action of glycerol-3-phosphate dehydrogenase (coded by genes GPD1 and GPD2). Here, we demonstrate that RNA-binding protein Pub1p regulates glycerol production by controlling Gpd1p activity. Its deletion does not alter GPD1 mRNA levels, but protein levels and enzymatic activity increase, which explains the higher intracellular glycerol concentration and greater tolerance to osmotic stress of the pub1∆ mutant. PUB1 deletion also enhances the activity of nicotinamidase, a longevity-promoting enzyme. Both enzymatic activities are partially located in peroxisomes, and we detected peroxisome formation during wine fermentation. The role of Pub1p in life span control depends on nutrient conditions and is related with the TOR pathway, and a major connection between RNA metabolism and the nutrient signaling response is established.

Collaboration


Dive into the Helena Orozco's collaboration.

Top Co-Authors

Avatar

Agustín Aranda

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beatriz Vallejo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana Sepúlveda

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Angeles Juarranz

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Elena Garre

University of Valencia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Esther Gamero-Sandemetrio

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge