Helena Pětrošová
Masaryk University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Helena Pětrošová.
PLOS ONE | 2013
Helena Pětrošová; Petra Pospíšilová; Michal Strouhal; Darina Čejková; Marie Zobaníková; Lenka Mikalová; Erica Sodergren; George M. Weinstock; David Šmajs
Background Treponema pallidum ssp. pallidum (TPA), the causative agent of syphilis, is a highly clonal bacterium showing minimal genetic variability in the genome sequence of individual strains. Nevertheless, genetically characterized syphilis strains can be clearly divided into two groups, Nichols-like strains and SS14-like strains. TPA Nichols and SS14 strains were completely sequenced in 1998 and 2008, respectively. Since publication of their complete genome sequences, a number of sequencing errors in each genome have been reported. Therefore, we have resequenced TPA Nichols and SS14 strains using next-generation sequencing techniques. Methodology/Principal Findings The genomes of TPA strains Nichols and SS14 were resequenced using the 454 and Illumina sequencing methods that have a combined average coverage higher than 90x. In the TPA strain Nichols genome, 134 errors were identified (25 substitutions and 109 indels), and 102 of them affected protein sequences. In the TPA SS14 genome, a total of 191 errors were identified (85 substitutions and 106 indels) and 136 of them affected protein sequences. A set of new intrastrain heterogenic regions in the TPA SS14 genome were identified including the tprD gene, where both tprD and tprD2 alleles were found. The resequenced genomes of both TPA Nichols and SS14 strains clustered more closely with related strains (i.e. strains belonging to same syphilis treponeme subcluster). At the same time, groups of Nichols-like and SS14-like strains were found to be more distantly related. Conclusion/Significance We identified errors in 11.5% of all annotated genes and, after correction, we found a significant impact on the predicted proteomes of both Nichols and SS14 strains. Corrections of these errors resulted in protein elongations, truncations, fusions and indels in more than 11% of all annotated proteins. Moreover, it became more evident that syphilis is caused by treponemes belonging to two separate genetic subclusters.
PLOS Neglected Tropical Diseases | 2012
Helena Pětrošová; Marie Zobaníková; Darina Čejková; Lenka Mikalová; Petra Pospíšilová; Michal Strouhal; Lei Chen; Xiang Qin; Donna M. Muzny; George M. Weinstock; David Šmajs
Background Treponema pallidum ssp. pallidum (TPA), the causative agent of syphilis, and Treponema pallidum ssp. pertenue (TPE), the causative agent of yaws, are closely related spirochetes causing diseases with distinct clinical manifestations. The TPA Mexico A strain was isolated in 1953 from male, with primary syphilis, living in Mexico. Attempts to cultivate TPA Mexico A strain under in vitro conditions have revealed lower growth potential compared to other tested TPA strains. Methodology/Principal Findings The complete genome sequence of the TPA Mexico A strain was determined using the Illumina sequencing technique. The genome sequence assembly was verified using the whole genome fingerprinting technique and the final sequence was annotated. The genome size of the Mexico A strain was determined to be 1,140,038 bp with 1,035 predicted ORFs. The Mexico A genome sequence was compared to the whole genome sequences of three TPA (Nichols, SS14 and Chicago) and three TPE (CDC-2, Samoa D and Gauthier) strains. No large rearrangements in the Mexico A genome were found and the identified nucleotide changes occurred most frequently in genes encoding putative virulence factors. Nevertheless, the genome of the Mexico A strain, revealed two genes (TPAMA_0326 (tp92) and TPAMA_0488 (mcp2-1)) which combine TPA- and TPE- specific nucleotide sequences. Both genes were found to be under positive selection within TPA strains and also between TPA and TPE strains. Conclusions/Significance The observed mosaic character of the TPAMA_0326 and TPAMA_0488 loci is likely a result of inter-strain recombination between TPA and TPE strains during simultaneous infection of a single host suggesting horizontal gene transfer between treponemal subspecies.
Journal of Clinical Microbiology | 2014
Linda Grillová; Helena Pětrošová; Lenka Mikalová; Radim Strnadel; Eliška Dastychová; Ivana Kuklová; Martina Kojanová; Miluše Kreidlová; Daniela Vaňousová; Jana Hercogová; Přemysl Procházka; Hana Zákoucká; Alena Krchňáková; Vladimír Vašků; David Šmajs
ABSTRACT From January 2011 to December 2013, a total of 262 samples, from 188 patients suspected of having syphilis were tested for the presence of treponemal DNA by PCR amplification of five chromosomal loci, including the polA (TP0105), tmpC (TP0319), TP0136, TP0548, and 23S rRNA genes. Altogether, 146 samples from 103 patients were PCR positive for treponemal DNA. A set of 81 samples from 62 PCR-positive patients were typeable, and among them, nine different genotypes were identified. Compared to a previous study in the Czech Republic during 2004 to 2010, the number of genotypes detected among syphilis patients in a particular year increased to six in both 2012 and 2013, although they were not the same six. The proportion of macrolide-resistant clinical isolates in this 3-year study was 66.7%.
International Journal of Medical Microbiology | 2014
Lukáš Nechvátal; Helena Pětrošová; Linda Grillová; Petra Pospíšilová; Lenka Mikalová; Radim Strnadel; Ivana Kuklová; Martina Kojanová; Miluše Kreidlová; Daniela Vaňousová; Přemysl Procházka; Hana Zákoucká; Alena Krchňáková; David Šmajs
Treponema pallidum strains are closely related at the genome level but cause distinct diseases. Subspecies pallidum (TPA) is the causative agent of syphilis, subspecies pertenue (TPE) causes yaws while subspecies endemicum (TEN) causes bejel (endemic syphilis). Compared to the majority of treponemal genomic regions, several chromosomal loci were found to be more diverse. To assess genetic variability in diverse genomic positions, we have selected (based on published genomic data) and sequenced five variable loci, TP0304, TP0346, TP0488, TP0515 and TP0558, in 19 reference Treponema pallidum strains including all T. pallidum subspecies (TPA, TPE and TEN). Results of this multilocus analysis divided syphilitic isolates into two groups: SS14-like and Nichols-like. The SS14-like group is comprised of SS14, Grady, Mexico A and Philadelphia 1 strains. The Nichols-like group consisted of strains Nichols, Bal 73-1, DAL-1, MN-3, Philadelphia 2, Haiti B and Madras. The TP0558 locus was selected for further studies because it clearly distinguished between the SS14- and Nichols-like groups and because the phylogenetic tree derived from the TP0558 locus showed the same clustering pattern as the tree constructed from whole genome sequences. In addition, TP0558 was shown as the only tested locus that evolved under negative selection within TPA strains. Sequencing of a short fragment (573bp) of the TP0558 locus in a set of 25 clinical isolates from 22 patients collected in the Czech Republic during 2012-2013 revealed that clinical isolates follow the SS14- and Nichols-like distribution.
Archive | 2014
Linda Grillová; Helena Pětrošová; Lenka Paštěková; David Šmajs
Archive | 2014
Linda Grillová; Michal Strouhal; Darina Čejková; Helena Pětrošová; Nathasa Aurora; Kay Nieselt; David Šmajs
Archive | 2014
Linda Grillová; Helena Pětrošová; Lenka Paštěková; David Šmajs
Archive | 2014
Linda Grillová; Helena Pětrošová; David Šmajs
Archive | 2014
Michal Strouhal; Darina Čejková; Helena Pětrošová; Linda Grillová; David Šmajs
Archive | 2012
Barbora Štaudová; Michal Strouhal; Marie Zobaníková; Helena Pětrošová; David Šmajs