Helena Riuró
University of Girona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Helena Riuró.
Human Mutation | 2013
Helena Riuró; Pedro Beltran-Alvarez; Anna Tarradas; Elisabet Selga; Oscar Campuzano; Marcel Vergés; Sara Pagans; Anna Iglesias; Josep Brugada; Pedro Brugada; Francisco M. Vázquez; Guillermo J. Pérez; Fabiana S. Scornik; Ramon Brugada
Brugada Syndrome (BrS) is a familial disease associated with sudden cardiac death. A 20%–25% of BrS patients carry genetic defects that cause loss‐of‐function of the voltage‐gated cardiac sodium channel. Thus, 70%–75% of patients remain without a genetic diagnosis. In this work, we identified a novel missense mutation (p.Asp211Gly) in the sodium β2 subunit encoded by SCN2B, in a woman diagnosed with BrS. We studied the sodium current (INa) from cells coexpressing Nav1.5 and wild‐type (β2WT) or mutant (β2D211G) β2 subunits. Our electrophysiological analysis showed a 39.4% reduction in INa density when Nav1.5 was coexpressed with the β2D211G. Single channel analysis showed that the mutation did not affect the Nav1.5 unitary channel conductance. Instead, protein membrane detection experiments suggested that β2D211G decreases Nav1.5 cell surface expression. The effect of the mutant β2 subunit on the INa strongly suggests that SCN2B is a new candidate gene associated with BrS.
Forensic Science International | 2010
Sara Partemi; Paola Berne; Montserrat Batlle; Antonio Berruezo; Luis Mont; Helena Riuró; José T. Ortiz; Eulalia Roig; Vincenzo Lorenzo Pascali; Ramon Brugada; Josep Brugada; Antonio Oliva
The usefulness of post-mortem mRNA analysis and its potential applications in forensic casework is currently of interest, especially because of several factors affecting the quality of RNA samples that are not practically predictable. In fact, post-mortem RNA degradation is a complex process that has not been studied systematically. The purpose of this work is to establish whether RNA analysis from post-mortem heart tissue could be used as a forensic tool to investigate the cause of death, with special regard to those cases where a cardiac disease is suspected as the manner of death. We analysed heart tissue from 16 individuals with normal cardiac function, 9 with long post-mortem intervals (L-PMI) and 7 from organ donors with very short PMIs (S-PMIs). Right ventricle tissue was homogenised, and the RNA was isolated and reverse transcribed. The resulting cDNA was used in real-time PCR reactions to quantify the gene expression of beta-glucuronidase (GUSB), Nitric Oxide Synthase 3 (NOS3), Collagen 1 (COL1A1) and Collagen 3 (COL3A1). The percentage of samples with high-quality RNA was higher in samples with S-PMI (7 out of 7) than in samples with L-PMI (4 out of 9, p<0.05). No differences in PMI time or cause of exitus were found between samples with degraded or non-degraded RNA in the L-PMI group. When comparing mRNA levels in samples with non-degraded RNA, we found similar values between the L-PMI and S-PMI groups for GUSB, COL1A1 and COL3A1. The NOS3 gene expression in the L-PMI subgroup was less than half that in the S-PMI. These results suggest that high-quality mRNA can be extracted from post-mortem human hearts only in some cases. Moreover, our data show that mRNA levels are independent from the PMI, even though there are mRNAs in which the expression levels are very susceptible to ischemia times. Clear knowledge about the relationship between mRNA integrity and expression and PMI could allow the use of several mRNAs as forensic tools to contribute to the determination of the cause of death with special regard to cardiovascular diseases.
Heart Rhythm | 2014
Helena Riuró; Oscar Campuzano; Elena Arbelo; Anna Iglesias; Montserrat Batlle; F. Pérez-Villa; Josep Brugada; Guillermo J. Pérez; Fabiana S. Scornik; Ramon Brugada
BACKGROUND Long QT syndrome (LQTS) is associated with sudden cardiac death and the prolongation of the QT interval on the electrocardiogram. A comprehensive screening of all genes previously associated with this disease leaves 30% of the patients without a genetic diagnosis. Pathogenic mutations in the sodium channel β subunits have been associated with cardiac channelopathies, including SCN4B mutations in LQTS. OBJECTIVE To evaluate the role of mutations in the sodium channel β subunits in LQTS. METHODS We screened for mutations in the genes encoding the 5 sodium β subunits (SCN1B isoforms a and b, SCN2B, SCN3B, and SCN4B) from 30 nonrelated patients who were clinically diagnosed with LQTS without mutations in common LQTS-related genes. We used the patch-clamp technique to study the properties of sodium currents and the action potential duration in human embryonic kidney and HL-1 cells, respectively, in the presence of β1b subunits. RESULTS The genetic screening revealed a novel mutation in the SCN1Bb gene (β1bP213T) in an 8-year-old boy. Our electrophysiological analysis revealed that β1bP213T increases late sodium current. In addition, β1bP213T subtly altered Nav1.5 function by shifting the window current, accelerating recovery from inactivation, and decreasing the slow inactivation rate. Moreover, experiments using HL-1 cells revealed that the action potential duration significantly increases when the mutant β1b was overexpressed compared with β1bWT. CONCLUSION These data revealed SCN1Bb as a susceptibility gene responsible for LQTS, highlighting the importance of continuing the search for new genes and mechanisms to decrease the percentage of patients with LQTS remaining without genetic diagnosis.
PLOS ONE | 2013
Anna Tarradas; Elisabet Selga; Pedro Beltran-Alvarez; Alexandra Pérez-Serra; Helena Riuró; Ferran Picó; Anna Iglesias; Oscar Campuzano; Víctor Castro-Urda; Ignacio Fernández-Lozano; Guillermo J. Pérez; Fabiana S. Scornik; Ramon Brugada
Brugada syndrome (BrS) is a life-threatening, inherited arrhythmogenic syndrome associated with autosomal dominant mutations in SCN5A, the gene encoding the cardiac Na+ channel alpha subunit (Nav1.5). The aim of this work was to characterize the functional alterations caused by a novel SCN5A mutation, I890T, and thus establish whether this mutation is associated with BrS. The mutation was identified by direct sequencing of SCN5A from the proband’s DNA. Wild-type (WT) or I890T Nav1.5 channels were heterologously expressed in human embryonic kidney cells. Sodium currents were studied using standard whole cell patch-clamp protocols and immunodetection experiments were performed using an antibody against human Nav1.5 channel. A marked decrease in current density was observed in cells expressing the I890T channel (from −52.0±6.5 pA/pF, n = 15 to −35.9±3.4 pA/pF, n = 22, at −20 mV, WT and I890T, respectively). Moreover, a positive shift of the activation curve was identified (V 1/2 = −32.0±0.3 mV, n = 18, and −27.3±0.3 mV, n = 22, WT and I890T, respectively). No changes between WT and I890T currents were observed in steady-state inactivation, time course of inactivation, slow inactivation or recovery from inactivation parameters. Cell surface protein biotinylation analyses confirmed that Nav1.5 channel membrane expression levels were similar in WT and I890T cells. In summary, our data reveal that the I890T mutation, located within the pore of Nav1.5, causes an evident loss-of-function of the channel. Thus, the BrS phenotype observed in the proband is most likely due to this mutation.
European Journal of Human Genetics | 2015
Helena Riuró; Oscar Campuzano; Paola Berne; Elena Arbelo; Anna Iglesias; Alexandra Pérez-Serra; Mònica Coll-Vidal; Sara Partemi; Irene Mademont-Soler; Ferran Picó; Catarina Allegue; Antonio Oliva; Edward P. Gerstenfeld; Georgia Sarquella-Brugada; Víctor Castro-Urda; Ignacio Fernández-Lozano; Lluis Mont; Josep Brugada; Fabiana S. Scornik; Ramon Brugada
The heritable cardiovascular disorder long QT syndrome (LQTS), characterized by prolongation of the QT interval on electrocardiogram, carries a high risk of sudden cardiac death. We sought to add new data to the existing knowledge of genetic mutations contributing to LQTS to both expand our understanding of its genetic basis and assess the value of genetic testing in clinical decision-making. Direct sequencing of the five major contributing genes, KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2, was performed in a cohort of 115 non-related LQTS patients. Pathogenicity of the variants was analyzed using family segregation, allele frequency from public databases, conservation analysis, and Condel and Provean in silico predictors. Phenotype-genotype correlations were analyzed statistically. Sequencing identified 36 previously described and 18 novel mutations. In 51.3% of the index cases, mutations were found, mostly in KCNQ1, KCNH2, and SCN5A; 5.2% of cases had multiple mutations. Pathogenicity analysis revealed 39 mutations as likely pathogenic, 12 as VUS, and 3 as non-pathogenic. Clinical analysis revealed that 75.6% of patients with QTc≥500 ms were genetically confirmed. Our results support the use of genetic testing of KCNQ1, KCNH2, and SCN5A as part of the diagnosis of LQTS and to help identify relatives at risk of SCD. Further, the genetic tools appear more valuable as disease severity increases. However, the identification of genetic variations in the clinical investigation of single patients using bioinformatic tools can produce erroneous conclusions regarding pathogenicity. Therefore segregation studies are key to determining causality.
Cardiovascular Pathology | 2013
Sara Partemi; Montserrat Batlle; Paola Berne; Antonio Berruezo; Begoña Campos; Luis Mont; Helena Riuró; Eulalia Roig; F. Pérez-Villa; José A. Ortiz; Vincenzo Lorenzo Pascali; Antonio Oliva; Ramon Brugada; Josep Brugada
BACKGROUND The mechanism of sudden cardiac death in patients with heart failure (HF) is uncertain. Both electrical instability and structural remodelling could be factors that lead to fatal arrhythmias. We sought to analyse the expression of the sodium (SCN5A) and potassium (KCND3) channels as well as the fibrosis content in the ventricles of human HF and of non-diseased hearts under different post-mortem intervals. METHODS AND RESULTS We analysed normal human hearts as controls [n=20 for the right ventricle (RV) and n=13 for the left ventricle (LV)] and human hearts from HF patients, which were obtained at the time of cardiac transplantation, as cases (n=48 for RV and n=34 for LV). Transcription of the SCN5A (probes SCN5A E4-5, E11-12, and E28) and KCND3 channels and of COLLAGEN I and III were assayed by real-time polymerase chain reaction. In addition, paraffin sections were used to analyse the percentage of collagen deposition in both cases and controls. KCND3 mRNA expression in the LV was lower in the cases than in controls (P<.001). Higher levels of SCN5A mRNA were found in the HF samples when analysed with probe SCN5A E4-5 (P<.05). SCN5A expression was lower in the controls with longer post-mortem interval (n=4) than in the controls with a shorter post- mortem interval (n=16, P<.01). KCND3 mRNA levels were also different between the two control groups (P<.05). Collagen deposition was higher in the LV tissues of the cases when compared to controls (P<.001), and it was higher in the LV from HF patients than in the RV (P<.05). Furthermore, collagen deposition was higher in the LV samples from patients with implanted cardiac defibrillator (ICD) therapy than in the LV of patients with no ICD therapy (P<.05). CONCLUSIONS These data indicate that ionic and structural remodelling could be pathophysiological mechanisms of cardiac arrhythmias in HF patients.
PLOS ONE | 2016
Irene Mademont-Soler; Mel·lina Pinsach-Abuin; Helena Riuró; Jesus Mates; Alexandra Pérez-Serra; Monica Coll; Jose Manuel Porres; Del Olmo B; Anna Iglesias; Elisabeth Selga; Ferran Picó; Sara Pagans; Carles Ferrer-Costa; Georgia Sarquella-Brugada; Elena Arbelo; Sergi Cesar; Josep Brugada; Oscar Campuzano; Ramon Brugada
Purpose Brugada syndrome (BrS) is a form of cardiac arrhythmia which may lead to sudden cardiac death. The recommended genetic testing (direct sequencing of SCN5A) uncovers disease-causing SNVs and/or indels in ~20% of cases. Limited information exists about the frequency of copy number variants (CNVs) in SCN5A in BrS patients, and the role of CNVs in BrS-minor genes is a completely unexplored field. Methods 220 BrS patients with negative genetic results were studied to detect CNVs in SCN5A. 63 cases were also screened for CNVs in BrS-minor genes. Studies were performed by Multiplex ligation-dependent probe amplification or Next-Generation Sequencing (NGS). Results The detection rate for CNVs in SCN5A was 0.45% (1/220). The detected imbalance consisted of a duplication from exon 15 to exon 28, and could potentially explain the BrS phenotype. No CNVs were found in BrS-minor genes. Conclusion CNVs in current BrS-related genes are uncommon among BrS patients. However, as these rearrangements may underlie a portion of cases and they undergo unnoticed by traditional sequencing, an appealing alternative to conventional studies in these patients could be targeted NGS, including in a single experiment the study of SNVs, indels and CNVs in all the known BrS-related genes.
PLOS ONE | 2015
Elisabet Selga; Oscar Campuzano; Mel·lina Pinsach-Abuin; Alexandra Pérez-Serra; Irene Mademont-Soler; Helena Riuró; Ferran Picó; Monica Coll; Anna Iglesias; Sara Pagans; Georgia Sarquella-Brugada; Paola Berne; Begoña Benito; Josep Brugada; Jose Manuel Porres; Matilde López Zea; Víctor Castro-Urda; Ignacio Fernández-Lozano; Ramon Brugada
Background Brugada syndrome (BrS) is a rare genetic cardiac arrhythmia that can lead to sudden cardiac death in patients with a structurally normal heart. Genetic variations in SCN5A can be identified in approximately 20-25% of BrS cases. The aim of our work was to determine the spectrum and prevalence of genetic variations in a Spanish cohort diagnosed with BrS. Methodology/Principal Findings We directly sequenced fourteen genes reported to be associated with BrS in 55 unrelated patients clinically diagnosed. Our genetic screening allowed the identification of 61 genetic variants. Of them, 20 potentially pathogenic variations were found in 18 of the 55 patients (32.7% of the patients, 83.3% males). Nineteen of them were located in SCN5A, and had either been previously reported as pathogenic variations or had a potentially pathogenic effect. Regarding the sequencing of the minority genes, we discovered a potentially pathogenic variation in SCN2B that was described to alter sodium current, and one nonsense variant of unknown significance in RANGRF. In addition, we also identified 40 single nucleotide variations which were either synonymous variants (four of them had not been reported yet) or common genetic variants. We next performed MLPA analysis of SCN5A for the 37 patients without an identified genetic variation, and no major rearrangements were detected. Additionally, we show that being at the 30-50 years range or exhibiting symptoms are factors for an increased potentially pathogenic variation discovery yield. Conclusions In summary, the present study is the first comprehensive genetic evaluation of 14 BrS-susceptibility genes and MLPA of SCN5A in a Spanish BrS cohort. The mean pathogenic variation discovery yield is higher than that described for other European BrS cohorts (32.7% vs 20-25%, respectively), and is even higher for patients in the 30-50 years age range.
International Journal of Molecular Sciences | 2015
Oscar Campuzano; Olallo Sanchez-Molero; Irene Mademont-Soler; Helena Riuró; Catarina Allegue; Monica Coll; Alexandra Pérez-Serra; Jesus Mates; Ferran Picó; Anna Iglesias; Ramon Brugada
A leading cause of death in western countries is sudden cardiac death, and can be associated with genetic disease. Next-generation sequencing has allowed thorough analysis of genes associated with this entity, including, most recently, titin. We aimed to identify potentially pathogenic genetic variants in titin. A total of 1126 samples were analyzed using a custom sequencing panel including major genes related to sudden cardiac death. Our cohort was divided into three groups: 432 cases from patients with cardiomyopathies, 130 cases from patients with channelopathies, and 564 post-mortem samples from individuals showing anatomical healthy hearts and non-conclusive causes of death after comprehensive autopsy. None of the patients included had definite pathogenic variants in the genes analyzed by our custom cardio-panel. Retrospective analysis comparing the in-house database and available public databases also was performed. We identified 554 rare variants in titin, 282 of which were novel. Seven were previously reported as pathogenic. Of these 554 variants, 493 were missense variants, 233 of which were novel. Of all variants identified, 399 were unique and 155 were identified at least twice. No definite pathogenic variants were identified in any of genes analyzed. We identified rare, mostly novel, titin variants that seem to play a potentially pathogenic role in sudden cardiac death. Additional studies should be performed to clarify the role of these variants in sudden cardiac death.
Circulation | 2015
Uschi Peeters; Fabiana S. Scornik; Helena Riuró; Guillermo J. Pérez; Evrim Komurcu-Bayrak; Sophie van Malderen; Gudrun Pappaert; Anna Tarradas; Sara Pagans; Dorien Daneels; Karine Breckpot; Pedro Brugada; Maryse Bonduelle; Ramon Brugada; Sonia Van Dooren
BACKGROUND Brugada syndrome (BrS) is an inheritable cardiac disease associated with syncope, malignant ventricular arrhythmias and sudden cardiac death. The largest proportion of mutations in BrS is found in the SCN5A gene encoding the α-subunit of cardiac sodium channels (Nav1.5). Causal SCN5A mutations are present in 18-30% of BrS patients. The additional genetic diagnostic yield of variants in cardiac sodium channel β-subunits in BrS patients was explored and functional studies on 3 novel candidate variants were performed. METHODSANDRESULTS TheSCN1B-SCN4B genes were screened, which encode the 5 sodium channel β-subunits, in a SCN5A negative BrS population (n=74). Five novel variants were detected; in silico pathogenicity prediction classified 4 variants as possibly disease causing. Three variants were selected for functional study. These variants caused only limited alterations of Nav1.5 function. Next generation sequencing of a panel of 88 arrhythmia genes could not identify other major causal mutations. CONCLUSIONS It was hypothesized that the studied variants are not the primary cause of BrS in these patients. However, because small functional effects of these β-subunit variants can be discriminated, they might contribute to the BrS phenotype and be considered a risk factor. The existence of these risk factors can give an explanation to the reduced penetrance and variable expressivity seen in this syndrome. We therefore recommend including the SCN1-4B genes in a next generation sequencing-based gene panel.