Helena Tomás
University of Lisbon
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Helena Tomás.
Journal of Controlled Release | 2010
José L. Santos; Hugo M. Oliveira; Deepti Pandita; João Rodrigues; Ana Paula Pêgo; Pedro L. Granja; Helena Tomás
A new family of gene delivery vectors is synthesized consisting of a medium-size generation PAMAM dendrimer (generation 5, with amine termini) core randomly linked at the periphery to hydrophobic chains that vary in length (12 to 16 carbon alkyl chains) and number (from 4.2 to 9.7 in average). The idea subjacent to the present work is to join the advantages of the cationic nature of the dendrimer with the capacity of lipids to interact with biological membranes. Unlike other amphiphilic systems designed for the same purpose, where the hydrophobic and hydrophilic moieties coexist in opposite sides, the present vectors have a hydrophilic interior and a hydrophobic corona. The vectors are characterized in respect to their ability to neutralize, bind and compact plasmid DNA (pDNA). The complexes formed between the vectors and pDNA are analyzed concerning their size, zeta-potential, resistance to serum nucleases, capacity of being internalized by cells and transfection efficiency. These new vectors show a remarkable capacity for mediating the internalization of pDNA with minimum cytotoxicity, being this effect positively correlated with the -CH(2)- content present in the hydrophobic corona. Gene expression in MSCs, a cell type with relevancy in the regenerative medicine clinical context, is also enhanced using the new vectors but, in this case, the higher efficiency is shown by the vectors containing the smallest hydrophobic chains.
Biomaterials | 2012
Yuebin Shan; Ting Luo; Chen Peng; Ruilong Sheng; Amin Cao; Xueyan Cao; Mingwu Shen; Rui Guo; Helena Tomás; Xiangyang Shi
Development of highly efficient nonviral gene delivery vectors still remains a great challenge. In this study, we report a new gene delivery vector based on dendrimer-entrapped gold nanoparticles (Au DENPs) with significantly higher gene transfection efficiency than that of dendrimers without AuNPs entrapped. Amine-terminated generation 5 poly(amidoamine) (PAMAM) dendrimers (G5.NH(2)) were utilized as templates to synthesize AuNPs with different Au atom/dendrimer molar ratios (25:1, 50:1, 75:1, and 100:1, respectively). The formed Au DENPs were used to complex two different pDNAs encoding luciferase (Luc) and enhanced green fluorescent protein (EGFP), respectively for gene transfection studies. The Au DENPs/pDNA polyplexes with different N/P ratios and compositions of Au DENPs were characterized by gel retardation assay, light scattering, zeta potential measurements, and atomic force microscopic imaging. We show that the Au DENPs can effectively compact the pDNA, allowing for highly efficient gene transfection into the selected cell lines as demonstrated by both Luc assay and fluorescence microscopic imaging of the EGFP expression. The transfection efficiency of Au DENPs with Au atom/dendrimer molar ratio of 25:1 was at least 100 times higher than that of G5.NH(2) dendrimers without AuNPs entrapped at the N/P ratio of 2.5:1. The higher gene transfection efficiency of Au DENPs is primarily due to the fact that the entrapment of AuNPs helps preserve the 3-dimensional spherical morphology of dendrimers, allowing for more efficient interaction between dendrimers and DNA. With the less cytotoxicity than that of G5.NH(2) dendrimers demonstrated by thiazoyl blue tetrazolium bromide assay and higher gene transfection efficiency, it is expected that Au DENPs may be used as a new gene delivery vector for highly efficient transfection of different genes for various biomedical applications.
Chemical Reviews | 2015
Yulin Li; Dina Maciel; João Rodrigues; Xiangyang Shi; Helena Tomás
Yulin Li,*,†,‡ Dina Maciel,† Joaõ Rodrigues,*,† Xiangyang Shi,*,†,§ and Helena Tomaś*,† †CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada 9000-390, Funchal, Portugal ‡The State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, People’s Republic of China College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
Current Gene Therapy | 2011
José L. Santos; Deepti Pandita; João Rodrigues; Ana Paula Pêgo; Pedro L. Granja; Helena Tomás
Mesenchymal stem cells (MSCs) can be isolated from several tissues in the body, have the ability to self-renewal, show immune suppressive properties and are multipotent, being able to generate various cell types. At present, due to their intrinsic characteristics, MSCs are considered very promising in the area of tissue engineering and regenerative medicine. In this context, genetic modification can be a powerful tool to control the behavior and fate of these cells and be used in the design of new cellular therapies. Viral systems are very effective in the introduction of exogenous genes inside MSCs. However, the risks associated with their use are leading to an increasing search for non-viral approaches to attain the same purpose, even if MSCs have been shown to be more difficult to transfect in this way. In the past few years, progress was made in the development of chemical and physical methods for non-viral gene delivery. Herein, an overview of the application of those methods specifically to MSCs is given and their use in tissue engineering and regenerative medicine therapeutic strategies highlighted using the example of bone tissue. Key issues and future directions in non-viral gene delivery to MSCs are also critically addressed.
Biomacromolecules | 2013
Dina Maciel; Priscilla Figueira; Shili Xiao; Dengmai Hu; Xiangyang Shi; João Rodrigues; Helena Tomás; Yulin Li
Although doxorubicin (Dox) has been widely used in the treatment of different types of cancer, its insufficient cellular uptake and intracellular release is still a limitation. Herein, we report an easy process for the preparation of redox-sensitive nanogels that were shown to be highly efficient in the intracellular delivery of Dox. The nanogels (AG/Cys) were obtained through in situ cross-linking of alginate (AG) using cystamine (Cys) as a cross-linker via a miniemulsion method. Dox was loaded into the AG/Cys nanogels by simply mixing it in aqueous solution with the nanogels, that is, by the establishment of electrostatic interactions between the anionic AG and the cationic Dox. The results demonstrated that the AG/Cys nanogels are cytocompatible, have a high drug encapsulation efficiency (95.2 ± 4.7%), show an in vitro accelerated release of Dox in conditions that mimic the intracellular reductive conditions, and can quickly be taken up by CAL-72 cells (an osteosarcoma cell line), resulting in higher Dox intracellular accumulation and a remarkable cell death extension when compared with free Dox. The developed nanogels can be used as a tool to overcome the problem of Dox resistance in anticancer treatments and possibly be used for the delivery of other cationic drugs in applications beyond cancer.
Molecular Pharmaceutics | 2010
José L. Santos; Deepti Pandita; João Rodrigues; Ana Paula Pêgo; Pedro L. Granja; Gary Balian; Helena Tomás
As mesenchymal stem cells (MSCs) can differentiate into multiple cell types, the delivery of exogenous genes to this type of cell can be an important tool in tissue regeneration and engineering. However transfection of MSCs using nonviral gene delivery vectors is difficult, the development of more efficient and safe DNA vehicles being necessary. Moreover, specific transfection of MSCs may be required to avoid unwanted side effects in other tissues. In this study, a novel family of gene delivery vectors based on poly(amidoamine) (PAMAM) dendrimers functionalized with peptides displaying high affinity toward MSCs was prepared. The vectors were characterized with respect to their ability to neutralize, bind and compact plasmid DNA (pDNA). The complexes formed between the vectors and pDNA were analyzed concerning their size, zeta-potential, capacity of being internalized by cells and transfection efficiency. These new vectors exhibited low cytotoxicity, receptor-mediated gene delivery into MSCs and transfection efficiencies superior to those presented by native dendrimers and by partially degraded dendrimers.
Journal of Controlled Release | 2009
José L. Santos; Elena Oramas; Ana Paula Pêgo; Pedro L. Granja; Helena Tomás
This paper reports the use of different generations of polyamidoamine (PAMAM) dendrimers for the in vitro transfection of mesenchymal stem cells (MSCs). A systematic study was carried out on the transfection efficiency achieved by the PAMAM dendrimers using a beta-galactosidase reporter gene system. Transfection results were shown to be dependent upon the generation of dendrimers, the amine to phosphate group ratio and the cell passage number. In all cases, the transfection efficiency was very low. Nevertheless, it was hypothesized that a low transfection level could be sufficient to promote the in vitro differentiation of MSCs towards the osteoblastic lineage. To address this possibility, dendrimers carrying the human bone morphogenetic protein-2 (hBMP-2) gene-containing plasmid were used. All quantitative (alkaline phosphatase activity, osteocalcin secretion and calcium deposition) and qualitative (von Kossa staining) osteogenic markers were significantly stronger in transfected cells when compared to non-transfected ones. This study not only clearly demonstrates that a low transfection level can be sufficient for inducing in vitro differentiation of MSCs to the osteoblast phenotype but also highlights the importance of focusing research on the development of gene delivery vectors in the concrete application.
Biomacromolecules | 2011
Deepti Pandita; José L. Santos; João Rodrigues; Ana Paula Pêgo; Pedro L. Granja; Helena Tomás
Poly(amidoamine) dendrimers (generations 5 and 6) with amine termini were conjugated with peptides containing the arginine-glycine-aspartic acid (RGD) sequence having in view their application as gene delivery vectors. The idea behind the work was to take advantage of the cationic nature of dendrimers and of the integrin targeting capabilities of the RGD motif to improve gene delivery. Dendrimers were used as scaffolds for RGD clustering and, by controlling the number of peptides (4, 8, and 16) linked to each dendrimer, it was possible to evaluate the effect of RGD density on the gene delivery process. The new vectors were characterized in respect to their ability to neutralize and compact plasmid DNA (pDNA). The complexes formed by the vectors and pDNA were studied concerning their size, zeta potential, capacity of being internalized by cells and ability of transferring genes. Transfection efficiency was analyzed, first, by using a pDNA encoding for Enhanced Green Fluorescent Protein and Firefly Luciferase and, second, by using a pDNA encoding for Bone Morphogenetic Protein-2. Gene expression in mesenchymal stem cells was enhanced using the new vectors in comparison to native dendrimers and was shown to be dependent on the electrostatic interaction established between the dendrimer moiety and the cell surface, as well as on the RGD density of nanoclusters. The use of dendrimer scaffolds for RGD cluster formation is a new approach that can be extended beyond gene delivery applications, whenever RGD clustering is important for modulating cellular responses.
Journal of Biomedical Materials Research Part A | 2009
Natália M. Alves; Jun Shi; Elena Oramas; José L. Santos; Helena Tomás; João F. Mano
The aptitude of a cell to adhere, migrate, and differentiate on a compact substrate or scaffold is important in the field of tissue engineering and biomaterials. It is well known that cell behavior can be controlled and guided through the change in micro- and nano-scale topographic features. In this work, we intend to demonstrate that special topographic features that control wettability may also have an important role in the biological performance of biodegradable substrates. Poly(L-lactic acid) surfaces with superhydrophobic characteristics were produced, based on the so-called Lotus effect, exhibiting dual micro- and nano-scale roughness. The water contact angle could be higher than 150 degrees and a value of that order could be kept even upon immersion in a simulated body fluid solution for more than 20 days. Such water repellent surfaces were found to prevent adhesion and proliferation of bone marrow derived cells previously isolated from the femurs of 6-week-old male Wistar rats, when compared with smoother surfaces prepared by simple solvent casting. Such results demonstrate that these superhydrophobic surfaces may be used to control cell behavior onto biodegradable substrates.
Carbohydrate Polymers | 2013
Yu Luo; Shige Wang; Mingwu Shen; Ruiling Qi; Yi Fang; Rui Guo; Hongdong Cai; Xueyan Cao; Helena Tomás; Meifang Zhu; Xiangyang Shi
We report the fabrication of a novel carbon nanotube-containing nanofibrous polysaccharide scaffolding material via the combination of electrospinning and layer-by-layer (LbL) self-assembly techniques for tissue engineering applications. In this approach, electrospun cellulose acetate (CA) nanofibers were assembled with positively charged chitosan (CS) and negatively charged multiwalled carbon nanotubes (MWCNTs) or sodium alginate (ALG) via a LbL technique. We show that the 3-dimensional fibrous structures of the CA nanofibers do not appreciably change after the multilayered assembly process except that the surface of the fibers became much rougher than that before assembly. The incorporation of MWCNTs in the multilayered CA fibrous scaffolds tends to endow the fibers with improved mechanical property and promote fibroblast attachment, spreading, and proliferation when compared with CS/ALG multilayer-assembled fibrous scaffolds. The approach to engineering the nanofiber surfaces via LbL assembly likely provides many opportunities for new scaffolding materials design in various tissue engineering applications.