Hélène A. Simon
Georgia Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hélène A. Simon.
Clinical and Experimental Pharmacology and Physiology | 2009
Lakshmi Prasad Dasi; Hélène A. Simon; Philippe Sucosky; Ajit P. Yoganathan
1 Artificial heart valves have been in use for over five decades to replace diseased heart valves. Since the first heart valve replacement performed with a caged‐ball valve, more than 50 valve designs have been developed, differing principally in valve geometry, number of leaflets and material. To date, all artificial heart valves are plagued with complications associated with haemolysis, coagulation for mechanical heart valves and leaflet tearing for tissue‐based valve prosthesis. For mechanical heart valves, these complications are believed to be associated with non‐physiological blood flow patterns. 2 In the present review, we provide a birds‐eye view of fluid mechanics for the major artificial heart valve types and highlight how the engineering approach has shaped this rapidly diversifying area of research. 3 Mechanical heart valve designs have evolved significantly, with the most recent designs providing relatively superior haemodynamics with very low aerodynamic resistance. However, high shearing of blood cells and platelets still pose significant design challenges and patients must undergo life‐long anticoagulation therapy. Bioprosthetic or tissue valves do not require anticoagulants due to their distinct similarity to the native valve geometry and haemodynamics, but many of these valves fail structurally within the first 10–15 years of implantation. 4 These shortcomings have directed present and future research in three main directions in attempts to design superior artificial valves: (i) engineering living tissue heart valves; (ii) development of advanced computational tools; and (iii) blood experiments to establish the link between flow and blood damage.
Physics of Fluids | 2007
Lakshmi Prasad Dasi; Liang Ge; Hélène A. Simon; Fotis Sotiropoulos; Ajit P. Yoganathan
We present comprehensive particle image velocimetry measurements and direct numerical simulation (DNS) of physiological, pulsatile flow through a clinical quality bileaflet mechanical heart valve mounted in an idealized axisymmetric aorta geometry with a sudden expansion modeling the aortic sinus region. Instantaneous and ensemble-averaged velocity measurements as well as the associated statistics of leaflet kinematics are reported and analyzed in tandem to elucidate the structure of the velocity and vorticity fields of the ensuing flow-structure interaction. The measurements reveal that during the first half of the acceleration phase, the flow is laminar and repeatable from cycle to cycle. The valve housing shear layer rolls up into the sinus and begins to extract vorticity of opposite sign from the sinus wall. A start-up vortical structure is shed from the leaflets and is advected downstream as the leaflet shear layers become wavy and oscillatory. In the second half of flow acceleration the leaflet shea...
Annals of Biomedical Engineering | 2006
Hwa Liang Leo; Lakshmi Prasad Dasi; Josie Carberry; Hélène A. Simon; Ajit P. Yoganathan
Polymeric heart valves have the potential to reduce thrombogenic complications associated with current mechanical valves and overcome fatigue-related problems experienced by bioprosthetic valves. In this paper we characterize the in vitro velocity and Reynolds Shear Stress (RSS) fields inside and downstream of three different prototype trileaflet polymeric heart valves. The fluid dynamic differences are then correlated with variations in valve design parameters. The three valves differ in leaflet thickness, ranging from 80 to 120 μm, and commisural design, either closed, opened, or semi-opened. The valves were subjected to aortic flow conditions and the velocity measured using three-dimensional stereo Particle Image Velocimetry. The peak forward flow phase in the three valves was characterized by a strong central orifice jet of approximately 2 m/s with a flat profile along the trailing edge of the leaflets. Leakage jets, with principle RSS magnitudes exceeding 4,500 dyn/cm2, were observed in all valves with larger leaflet thicknesses and also corresponded to larger leakage volumes. Additional leakage jets were observed at the commissural region of valves with the open and the semi-open commissural designs. The results of the present study indicate that commissural design and leaflet thickness influence valve fluid dynamics and thus the thrombogenic potential of trileaflet polymeric valves.
Annals of Biomedical Engineering | 2004
Hélène A. Simon; Hwa Liang Leo; Josie Carberry; Ajit P. Yoganathan
Background: Animal and clinical studies have shown that bileaflet mechanical heart valve designs are plagued by thromboembolic complications, with higher rates in the mitral than in the aortic position. This study evaluated the hinge flow dynamic of the 23 mm St. Jude Medical (SJM) Regent and the 23 mm CarboMedics (CM) valves under aortic conditions and compared these results with previous findings under mitral conditions. Method: Velocity and Reynolds shear stress fields were captured using two-component laser Doppler velocimetry. Results: Under aortic conditions, both the SJM and CM hinge flow fields exhibited a strong forward flow pattern during systole (maximum velocities of 2.31 and 1.75 m/s, respectively) and two main leakage jets during diastole (maximum velocities of 3.08 and 2.27 m/s, respectively). Conclusions: Aortic and mitral flow patterns within the two hinges were similar, but with a more dynamic flow during the forward flow phase under aortic conditions. Velocity magnitudes and shear stresses measured under mitral conditions were generally higher than those obtained in the aortic position, which may explain the higher rates of thromboembolism in the mitral implants when compared with the aortic implants.
Annals of Biomedical Engineering | 2005
Hwa Liang Leo; Hélène A. Simon; Josie Carberry; Shao-Chien Lee; Ajit P. Yoganathan
Polymeric heart valves have the potential to reduce thrombogenic complications associated with current mechanical valves and overcome fatigue-related problems experienced by bioprosthetic valves. In this in vitro study, the velocity fields inside and downstream of two different prototype tri-lealfet polymeric heart valves were studied. Experiments were conducted on two 23 mm prototype polymeric valves, provided by AorTech Europe, having open or closed commissure designs and leaflet thickness of 120 and 80 μm, respectively. A two-dimensional LDV system was used to measure the velocity fields in the vicinity of the two valves under simulated physiological conditions. Both commissural design and leaflet thickness were found to affect the flow characteristics. In particular, very high levels of Reynolds shear stress of 13,000 dynes/cm2 were found in the leakage flow of the open commisure design. Maximum leakage velocities in the open and closed designs were 3.6 m/s and 0.5 m/s respectively; the peak forward flow velocities were 2.0 m/s and 2.6 m/s, respectively. In both valve designs, shear stress levels exceeding 4,000 dyne/cm2 were observed at the trailing edge of the leaflets and in the leakage and central orifice jets during peak systole. Additionally, regions of low velocity flow conducive to thrombus formation were observed in diastole. The flow structures measured in these experiments are consistent with the location of thrombus formation observed in preliminary animal experiments.
Annals of Biomedical Engineering | 2010
Hélène A. Simon; Liang Ge; Fotis Sotiropoulos; Ajit P. Yoganathan
Thromboembolic complications (TECs) of bileaflet mechanical heart valves (BMHVs) are believed to be due to the nonphysiologic mechanical stresses imposed on blood elements by the hinge flows. Relating hinge flow features to design features is, therefore, essential to ultimately design BMHVs with lower TEC rates. This study aims at simulating the pulsatile three-dimensional hinge flows of three BMHVs and estimating the TEC potential associated with each hinge design. Hinge geometries are constructed from micro-computed tomography scans of BMHVs. Simulations are conducted using a Cartesian sharp-interface immersed-boundary methodology combined with a second-order accurate fractional-step method. Leaflet motion and flow boundary conditions are extracted from fluid–structure-interaction simulations of BMHV bulk flow. The numerical results are analyzed using a particle-tracking approach coupled with existing blood damage models. The gap width and, more importantly, the shape of the recess and leaflet are found to impact the flow distribution and TEC potential. Smooth, streamlined surfaces appear to be more favorable than sharp corners or sudden shape transitions. The developed framework will enable pragmatic and cost-efficient preclinical evaluation of BMHV prototypes prior to valve manufacturing. Application to a wide range of hinges with varying design parameters will eventually help in determining the optimal hinge design.
Annals of Biomedical Engineering | 2007
Hélène A. Simon; Lakshmi Prasad Dasi; Hwa Liang Leo; Ajit P. Yoganathan
Point-wise velocity measurements have been traditionally acquired to estimate blood damage potential induced by prosthetic heart valves with emphasis on peak values of velocity magnitude and Reynolds stresses. However, the inherently Lagrangian nature of platelet activation and hemolysis makes such measurements of limited predictive value. This study provides a refined fluid mechanical analysis, including blood element paths and stress exposure times, of the hinge flows of a CarboMedics bileaflet mechanical heart valve placed under both mitral and aortic conditions and a St Jude Medical bileaflet valve placed under aortic conditions. The hinge area was partitioned into characteristic regions based on dominant flow structures and spatio-temporal averaging was performed on the measured velocities and Reynolds shear stresses to estimate the average bulk stresses acting on blood elements transiting through the hinge. A first-order estimate of viscous stress levels and exposure times were computed. Both forward and leakage flow phases were characterized in each partition by dynamic flows dependent on subtle leaflet movements and transvalvular pressure fluctuations. Blood elements trapped in recirculation regions may experience exposure times as long as the entire forward flow phase duration. Most calculated stresses were below the accepted blood damage threshold. Estimates of the stress levels indicate that the flow conditions within the boundary layers near the hinge and leaflet walls may be more detrimental to blood cells than bulk flow conditions, while recirculation regions may promote thrombus buildup.
Annals of Biomedical Engineering | 2010
Hélène A. Simon; Liang Ge; Iman Borazjani; Fotis Sotiropoulos; Ajit P. Yoganathan
Thromboembolic complications of bileaflet mechanical heart valves (BMHV) are believed to be due to detrimental stresses imposed on blood elements by the hinge flows. Characterization of these flows is thus crucial to identify the underlying causes for complications. In this study, we conduct three-dimensional pulsatile flow simulations through the hinge of a BMHV under aortic conditions. Hinge and leaflet geometries are reconstructed from the Micro-Computed Tomography scans of a BMHV. Simulations are conducted using a Cartesian sharp-interface immersed-boundary methodology combined with a secondorder accurate fractional-step method. Physiologic flow boundary conditions and leaflet motion are extracted from the Fluid–Structure Interaction simulations of the bulk of the flow through a BMHV. Calculations reveal the presence, throughout the cardiac cycle, of flow patterns known to be detrimental to blood elements. Flow fields are characterized by: (1) complex systolic flows, with rotating structures and slow reverse flow pattern, and (2) two strong diastolic leakage jets accompanied by fast reverse flow at the hinge bottom. Elevated shear stresses, up to 1920 dyn/cm during systole and 6115 dyn/cm during diastole, are reported. This study underscores the need to conduct three-dimensional simulations throughout the cardiac cycle to fully characterize the complexity and thromboembolic potential of the hinge flows. Keywords—Pulsatile numerical simulations, Fluid mechanics, Pivot, Computational fluid dynamics CFD, Physiologic
ASME 2008 Summer Bioengineering Conference, Parts A and B | 2008
Hélène A. Simon; Liang Ge; Iman Borazjani; Fotis Sotiropoulos; Ajit P. Yoganathan
Native heart valves with limited functionality are commonly replaced by prosthetic heart valves. Since the first heart valve replacement in 1960, more than three million valves have been implanted worldwide. The most widely implanted prosthetic heart valve design is currently the bileaflet mechanical heart valve (BMHV), with more than 130,000 implants every year worldwide. However, studies have shown that this valve design can still cause major complications, including hemolysis, platelet activation, and thromboembolic events. Clinical reports and recent in vitro experiments suggest that these thrombogenic complications are associated with the hemodynamic stresses imposed on blood elements by the complex non-physiologic flow induced by the valve, in particular in the hinge region.Copyright
Le Pharmacien Hospitalier | 2006
Johann Clouet; Hélène A. Simon; Olivier Sellal; Gaël Grimandi; Daniel Duveau
Resume Depuis plus de quarante ans, l’utilisation des protheses valvulaires dans la prise en charge des valvulopathies a connu un essor important. L’existence de deux types de protheses, mecaniques et biologiques, associee a des donnees cliniques liees directement au patient, a conduit les chirurgiens a definir des criteres de choix. Par l’analyse de la litterature, ce travail propose une meilleure connaissance des criteres de performances des valves prothetiques et de leurs indications. La prise en charge post-chirurgicale des patients est egalement rappelee par une analyse des differentes recommandations publiees. Cet article constitue une base de travail destinee aux pharmaciens hospitaliers amenes a discuter avec les chirurgiens du referencement des protheses lors des etapes de passation de marches publics.