Hélène Marquis
Cornell University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hélène Marquis.
Infection and Immunity | 2006
Heather S. O'Neil; Hélène Marquis
ABSTRACT Flagellar structures contribute to the virulence of multiple gastrointestinal pathogens either as the effectors of motility, as adhesins, or as a secretion apparatus for virulence factors. Listeria monocytogenes is a food-borne, gram-positive pathogen that uses flagella to increase the efficiency of epithelial cell invasion (A. Bigot, H. Pagniez, E. Botton, C. Frehel, I. Dubail, C. Jacquet, A. Charbit, and C. Raynaud, Infect. Immun. 73:5530-5539, 2005; L. Dons, E. Eriksson, Y. Jin, M. E. Rottenberg, K. Kristensson, C. N. Larsen, J. Bresciani, and J. E. Olsen, Infect. Immun. 72:3237-3244, 2004). In this study, we aimed to elucidate the mechanism by which flagella contribute to L. monocytogenes invasion. To examine the role of flagella as adhesins, invasion and adhesion assays were performed with flagellated motile and nonmotile bacteria and nonflagellated bacteria. We observed that flagellated but nonmotile bacteria do not adhere to or invade human epithelial cells more efficiently than nonflagellated bacteria. These results indicated that flagella do not function as adhesins to enhance the adhesion of L. monocytogenes to targeted host cells. Instead, it appears that motility is important for tissue culture invasion. Furthermore, we tested whether motility contributes to early colonization of the gastrointestinal tract using a competitive index assay in which mice were infected orally with motile and nonmotile bacteria in a 1:1 ratio. Differential bacterial counts demonstrated that motile bacteria outcompete nonmotile bacteria in the colonization of the intestines at early time points postinfection. This difference is also reflected in invasion of the liver 12 h later, suggesting that flagellum-mediated motility enhances L. monocytogenes infectivity soon after bacterial ingestion in vivo.
Infection and Immunity | 2004
Heesun Kim; Kathryn J. Boor; Hélène Marquis
ABSTRACT The role of σB in Listeria monocytogenes infection of human intestinal epithelial cells was investigated. Invasion defects associated with loss of σB paralleled those of a ΔinlA strain independently of the σB-dependent P2prfA promoter. Concomitantly, amounts of inlA transcript and InlA protein were significantly decreased in the ΔsigB strain.
Journal of Bacteriology | 2009
Jason Zemansky; Benjamin C. Kline; Joshua J. Woodward; Jess H. Leber; Hélène Marquis; Daniel A. Portnoy
Listeriolysin O (LLO) is a pore-forming toxin that mediates phagosomal escape and cell-to-cell spread of the intracellular pathogen Listeria monocytogenes. In order to identify factors that control the production, activity, or secretion of this essential virulence factor, we constructed a Himar1 mariner transposon delivery system and screened 50,000 mutants for a hypohemolytic phenotype on blood agar plates. Approximately 200 hypohemolytic mutants were identified, and the 51 most prominent mutants were screened ex vivo for intracellular growth defects. Eight mutants with a phenotype were identified, and they contained insertions in the following genes: lmo0964 (similar to yjbH), lmo1268 (clpX), lmo1401 (similar to ymdB), lmo1575 (similar to ytqI), lmo1695 (mprF), lmo1821 (similar to prpC), lmo2219 (prsA2), and lmo2460 (similar to cggR). Some of these genes are involved in previously unexplored areas of research with L. monocytogenes: the genes yjbH and clpX regulate the disulfide stress response in Bacillus subtilis, and the prpC phosphatase has been implicated in virulence in other gram-positive pathogens. Here we demonstrate that prsA2, an extracytoplasmic peptidyl-prolyl cis/trans isomerase, is critical for virulence and contributes to the folding of LLO and to the activity of another virulence factor, the broad-range phospholipase C (PC-PLC). Furthermore, although it has been shown that prsA2 expression is linked to PrfA, the master virulence transcription factor in L. monocytogenes pathogenesis, we demonstrate that prsA2 is not directly controlled by PrfA. Finally, we show that PrsA2 is involved in flagellum-based motility, indicating that this factor likely serves a broad physiological role.
Applied and Environmental Microbiology | 2007
Min Cao; Alan Pavinski Bitar; Hélène Marquis
ABSTRACT In this study, we developed a new mariner-based transposition system for Listeria monocytogenes. The mariner-based system has a high rate of transposition and a low rate of plasmid retention, and transposition is very random, making it an ideal tool for high-throughput transposon mutagenesis in L. monocytogenes.
Journal of Bacteriology | 2005
P. S. Marie Yeung; Nicholas Zagorski; Hélène Marquis
Listeria monocytogenes is a gram-positive bacterial pathogen that multiplies in the cytosol of host cells and spreads directly from cell to cell. During cell-to-cell spread, bacteria become temporarily confined to secondary vacuoles. The broad-range phospholipase C (PC-PLC) of L. monocytogenes contributes to bacterial escape from secondary vacuoles. PC-PLC requires cleavage of an N-terminal propeptide for activation, and Mpl, a metalloprotease of Listeria, is involved in the proteolytic activation of PC-PLC. Previously, we showed that cell wall translocation of PC-PLC is inefficient, resulting in accumulation of PC-PLC at the membrane-cell wall interface. In infected cells, rapid cell wall translocation of PC-PLC is triggered by a decrease in pH and correlates with cleavage of the propeptide in an Mpl-dependent manner. To address the role of the propeptide and of Mpl in cell wall translocation of PC-PLC, we generated a cleavage site mutant and a propeptide deletion mutant. The intracellular behavior of these mutants was assessed in pulse-chase experiments. We observed efficient translocation of the proform of the PC-PLC cleavage site mutant in a manner that was pH sensitive and Mpl dependent. However, the propeptide deletion mutant was efficiently translocated into host cells independent of Mpl and pH. Overall, these results suggest that Mpl regulates PC-PLC translocation across the bacterial cell wall in a manner that is dependent on the presence of the propeptide but independent of propeptide cleavage. In addition, similarly to Mpl-mediated cleavage of PC-PLC propeptide, Mpl-mediated translocation of PC-PLC across the bacterial cell wall is pH sensitive.
Molecular Microbiology | 2009
Bobbi Xayarath; Hélène Marquis; Gary C. Port; Nancy E. Freitag
The bacterial pathogen Listeria monocytogenes survives under a myriad of conditions in the outside environment and within the human host where infections can result in severe disease. Bacterial life within the host requires the expression of genes with roles in nutrient acquisition as well as the biosynthesis of bacterial products required to support intracellular growth. A gene product identified as the substrate‐binding component of a novel oligopeptide transport system (encoded by lmo0135) was recently shown to be required for L. monocytogenes virulence. Here we demonstrate that lmo0135 encodes a multifunctional protein that is associated with cysteine transport, acid resistance, bacterial membrane integrity and adherence to host cells. The lmo0135 gene product (designated CtaP, for cysteine transport associated protein) was required for bacterial growth in the presence of low concentrations of cysteine in vitro, but was not required for bacterial replication within the host cytosol. Loss of CtaP increased membrane permeability and acid sensitivity, and reduced bacterial adherence to host cells. ctaP deletion mutants were severely attenuated following intragastric and intravenous inoculation of mice. Taken together, the data presented indicate that CtaP contributes to multiple facets of L. monocytogenes physiology, growth and survival both inside and outside of animal cells.
Journal of Bacteriology | 2008
Alan Pavinski Bitar; Min Cao; Hélène Marquis
The metalloprotease (Mpl) of Listeria monocytogenes is a thermolysin-like protease that mediates the maturation of a broad-range phospholipase C, whose function contributes to the ability of this food-borne bacterial pathogen to survive intracellularly. Mpl is made as a proprotein that undergoes maturation by proteolytic cleavage of a large N-terminal prodomain. In this study, we identified the N terminus of mature Mpl and generated Mpl catalytic mutants to investigate the mechanism of Mpl maturation. We observed that Mpl activity was a prerequisite for maturation, suggesting a mechanism of autocatalysis. Furthermore, using a strain of L. monocytogenes expressing both the wild-type form and a catalytic mutant form of Mpl simultaneously, we determined that in vivo maturation of Mpl occurs exclusively by an intramolecular autocatalysis mechanism.
Journal of Bacteriology | 2003
Aleksandra Snyder; Hélène Marquis
The virulence of Listeria monocytogenes is directly related to its ability to spread from cell to cell without leaving the intracellular milieu. During cell-to-cell spread, bacteria become temporarily confined to secondary vacuoles. Among the bacterial factors involved in escape from these vacuoles is a secreted broad-range phospholipase C (PC-PLC), the activation of which requires processing of an N-terminal prodomain. Mpl, a secreted metalloprotease of Listeria, is involved in the proteolytic activation of PC-PLC. We previously showed that, during intracellular growth, bacteria maintain a pool of PC-PLC that is not accessible to antibodies and that is rapidly released in its active form in response to a decrease in pH. pH-regulated release of active PC-PLC is Mpl dependent. To further characterize the mechanism regulating secretion of PC-PLC, the bacterial localization of PC-PLC and Mpl was investigated. Both proteins were detected in the bacterial supernatant and lysate with no apparent changes in molecular weight. Extraction of bacteria-associated PC-PLC and Mpl required cell wall hydrolysis, but there was no indication that either protein was covalently bound to the bacterial cell wall. Results from pulse-chase experiments performed with infected macrophages indicated that the rate of synthesis of PC-PLC exceeded the rate of translocation across the bacterial cell wall and confirmed that the pool of PC-PLC associated with bacteria was efficiently activated and secreted upon acidification of the host cell cytosol. These data suggest that bacterially associated PC-PLC and Mpl localize at the cell wall-membrane interface and that translocation of PC-PLC across the bacterial cell wall is rate limiting, resulting in the formation of a bacterially associated pool of PC-PLC that would readily be accessible for activation and release into nascent secondary vacuoles.
Molecular Microbiology | 2012
Brian M. Forster; Hélène Marquis
In monoderm (single‐membrane) Gram‐positive bacteria, the majority of secreted proteins are first translocated across the cytoplasmic membrane into the inner wall zone. For a subset of these proteins, final destination is within the cell envelope as either membrane‐anchored or cell wall‐anchored proteins, whereas another subset of proteins is destined to be transported across the cell wall into the extracellular milieu. Although the cell wall is a porous structure, there is evidence that, for some proteins, transport is a regulated process. This review aims at describing what is known about the mechanisms that regulate the transport of proteins across the cell wall of monoderm Gram‐positive bacteria.
Infection and Immunity | 2007
P. S. Marie Yeung; Yoojin Na; Amanda J. Kreuder; Hélène Marquis
ABSTRACT Listeria monocytogenes is a bacterial pathogen that multiplies in the cytosol of host cells and spreads directly from cell to cell by using an actin-based mechanism of motility. The broad-range phospholipase C (PC-PLC) of L. monocytogenes contributes to bacterial escape from vacuoles formed upon cell-to-cell spread. PC-PLC is made as an inactive proenzyme whose activation requires cleavage of an N-terminal propeptide. During infection, PC-PLC is activated specifically in acidified vacuoles. To assess the importance of compartmentalizing PC-PLC activity during infection, we created a mutant that makes constitutively active PC-PLC (the plcBΔpro mutant). Results from intracellular growth and cell-to-cell spread assays showed that the plcBΔpro mutant was sensitive to gentamicin, suggesting that unregulated PC-PLC activity causes damage to host cell membranes. This was confirmed by the observation of a twofold increase in staining of live infected cells by a non-membrane-permeant DNA fluorescent dye. However, membrane damage was not sufficient to cause cell lysis and was dependent on bacterial cell-to-cell spread, suggesting that damage was localized to bacterium-containing filopodia. Using an in vivo competitive infection assay, we observed that the plcBΔpro mutant was outcompeted up to 200-fold by the wild-type strain in BALB/c mice. Virulence attenuation was greater when mice were infected orally than when they were infected intravenously, presumably because the plcBΔpro mutant was initially outcompeted in the intestines, reducing the number of mutant bacteria reaching the liver and spleen. Together, these results emphasize the importance for L. monocytogenes virulence of compartmentalizing the activity of PC-PLC during infection.