Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Helene Strick-Marchand is active.

Publication


Featured researches published by Helene Strick-Marchand.


Nature | 2011

Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells.

Kosuke Yusa; S. Tamir Rashid; Helene Strick-Marchand; Ignacio Varela; Pei Qi Liu; David Paschon; Elena Miranda; Adriana Ordóñez; Nicholas Hannan; Foad Rouhani; Sylvie Darche; Graeme J. M. Alexander; Stefan J. Marciniak; Noemi Fusaki; Mamoru Hasegawa; Michael C. Holmes; James P. Di Santo; David A. Lomas; Allan Bradley; Ludovic Vallier

Human induced pluripotent stem cells (iPSCs) represent a unique opportunity for regenerative medicine because they offer the prospect of generating unlimited quantities of cells for autologous transplantation, with potential application in treatments for a broad range of disorders. However, the use of human iPSCs in the context of genetically inherited human disease will require the correction of disease-causing mutations in a manner that is fully compatible with clinical applications. The methods currently available, such as homologous recombination, lack the necessary efficiency and also leave residual sequences in the targeted genome. Therefore, the development of new approaches to edit the mammalian genome is a prerequisite to delivering the clinical promise of human iPSCs. Here we show that a combination of zinc finger nucleases (ZFNs) and piggyBac technology in human iPSCs can achieve biallelic correction of a point mutation (Glu342Lys) in the α1-antitrypsin (A1AT, also known as SERPINA1) gene that is responsible for α1-antitrypsin deficiency. Genetic correction of human iPSCs restored the structure and function of A1AT in subsequently derived liver cells in vitro and in vivo. This approach is significantly more efficient than any other gene-targeting technology that is currently available and crucially prevents contamination of the host genome with residual non-human sequences. Our results provide the first proof of principle, to our knowledge, for the potential of combining human iPSCs with genetic correction to generate clinically relevant cells for autologous cell-based therapies.


Hepatology | 2010

Generation of functional hepatocytes from human embryonic stem cells under chemically defined conditions that recapitulate liver development

Thomas Touboul; Nicholas Hannan; Sébastien Corbineau; Amélie Martinez; Clémence Martinet; Sophie Branchereau; Sylvie Mainot; Helene Strick-Marchand; Roger A. Pedersen; James P. Di Santo; Anne Weber; Ludovic Vallier

Generation of hepatocytes from human embryonic stem cells (hESCs) could represent an advantageous source of cells for cell therapy approaches as an alternative to orthotopic liver transplantation. However, the generation of differentiated hepatocytes from hESCs remains a major challenge, especially using a method compatible with clinical applications. We report a novel approach to differentiate hESCs into functional hepatic cells using fully defined culture conditions, which recapitulate essential stages of liver development. hESCs were first differentiated into a homogenous population of endoderm cells using a combination of activin, fibroblast growth factor 2, and bone morphogenetic protein 4 together with phosphoinositide 3‐kinase inhibition. The endoderm cells were then induced to differentiate further into hepatic progenitors using fibroblast growth factor 10, retinoic acid, and an inhibitor of activin/nodal receptor. After further maturation, these cells expressed markers of mature hepatocytes, including asialoglycoprotein receptor, tyrosine aminotransferase, α1‐antitrypsin, Cyp7A1, and hepatic transcription factors such as hepatocyte nuclear factors 4α and 6. Furthermore, the cells generated under these conditions exhibited hepatic functions in vitro, including glycogen storage, cytochrome activity, and low‐density lipoprotein uptake. After transduction with a green fluorescent protein–expressing lentivector and transplantation into immunodeficient uPA transgenic mice, differentiated cells engrafted into the liver, grew, and expressed human albumin and α1‐antitrypsin as well as green fluorescent protein for at least 8 weeks. In addition, we showed that hepatic cells could be generated from human‐induced pluripotent cells derived from reprogrammed fibroblasts, demonstrating the efficacy of this approach with pluripotent stem cells of diverse origins. Conclusion: We have developed a robust and efficient method to differentiate pluripotent stem cells into hepatic cells, which exhibit characteristics of human hepatocytes. Our approach should facilitate the development of clinical grade hepatocytes for transplantation and for research on drug discovery. (HEPATOLOGY 2010.)


Cancer Cell | 2008

Hepatic Stem-like Phenotype and Interplay of Wnt/β-Catenin and Myc Signaling in Aggressive Childhood Liver Cancer

Stefano Cairo; Carolina Armengol; Aurélien de Reyniès; Yu Wei; Emilie Thomas; Claire-Angélique Renard; Andrei Goga; Asha Balakrishnan; Michaela Semeraro; Lionel Gresh; Marco Pontoglio; Helene Strick-Marchand; Florence Levillayer; Yann Nouët; David S. Rickman; Frédéric Gauthier; Sophie Branchereau; Laurence Brugières; Veronique Laithier; Raymonde Bouvier; Françoise Boman; Giuseppe Basso; Jean-François Michiels; Paul Hofman; Francine Arbez-Gindre; Hélène Jouan; Marie-Christine Rousselet-Chapeau; Dominique Berrebi; Luc Marcellin; François Plenat

Hepatoblastoma, the most common pediatric liver cancer, is tightly linked to excessive Wnt/beta-catenin signaling. Here, we used microarray analysis to identify two tumor subclasses resembling distinct phases of liver development and a discriminating 16-gene signature. beta-catenin activated different transcriptional programs in the two tumor types, with distinctive expression of hepatic stem/progenitor markers in immature tumors. This highly proliferating subclass was typified by gains of chromosomes 8q and 2p and upregulated Myc signaling. Myc-induced hepatoblastoma-like tumors in mice strikingly resembled the human immature subtype, and Myc downregulation in hepatoblastoma cells impaired tumorigenesis in vivo. Remarkably, the 16-gene signature discriminated invasive and metastatic hepatoblastomas and predicted prognosis with high accuracy.


Cell Host & Microbe | 2009

Humanized mice for modeling human infectious disease: challenges, progress, and outlook.

Nicolas Legrand; Alexander Ploss; Rudi Balling; Pablo D. Becker; Chiara Borsotti; Nicolas Brezillon; Jennifer Debarry; Ype P. de Jong; Hongkui Deng; James P. Di Santo; Stephanie C. Eisenbarth; Elizabeth E. Eynon; Richard A. Flavell; Carlos A. Guzmán; Nicholas D. Huntington; Dina Kremsdorf; Michael P. Manns; Markus G. Manz; Jean-Jacques Mention; Michael Ott; Chozhavendan Rathinam; Charles M. Rice; Anthony Rongvaux; Sean Stevens; Hergen Spits; Helene Strick-Marchand; Hitoshi Takizawa; Anja U. van Lent; Chengyan Wang; Kees Weijer

Over 800 million people worldwide are infected with hepatitis viruses, human immunodeficiency virus (HIV), and malaria, resulting in more than 5 million deaths annually. Here we discuss the potential and challenges of humanized mouse models for developing effective and affordable therapies and vaccines, which are desperately needed to combat these diseases.


Gut | 2015

Towards an HBV cure: state-of-the-art and unresolved questions—report of the ANRS workshop on HBV cure

Mirjam B. Zeisel; Julie Lucifora; William S. Mason; Camille Sureau; Jürgen Beck; Massimo Levrero; Michael Kann; Percy A. Knolle; Monsef Benkirane; David Durantel; Marie Michel; Brigitte Autran; François-Loïc Cosset; Helene Strick-Marchand; Christian Trepo; Jia-Horng Kao; Fabrice Carrat; Karine Lacombe; Raymond F. Schinazi; Françoise Barré-Sinoussi; Jean François Delfraissy; Fabien Zoulim

HBV infection is a major cause of liver cirrhosis and hepatocellular carcinoma. Although HBV infection can be efficiently prevented by vaccination, and treatments are available, to date there is no reliable cure for the >240 million individuals that are chronically infected worldwide. Current treatments can only achieve viral suppression, and lifelong therapy is needed in the majority of infected persons. In the framework of the French National Agency for Research on AIDS and Viral Hepatitis ‘HBV Cure’ programme, a scientific workshop was held in Paris in June 2014 to define the state-of-the-art and unanswered questions regarding HBV pathobiology, and to develop a concerted strategy towards an HBV cure. This review summarises our current understanding of HBV host-interactions leading to viral persistence, as well as the roadblocks to be overcome to ultimately address unmet medical needs in the treatment of chronic HBV infection.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Functional CD47/signal regulatory protein alpha (SIRPα) interaction is required for optimal human T- and natural killer- (NK) cell homeostasis in vivo

Nicolas Legrand; Nicholas D. Huntington; Maho Nagasawa; Arjen Q. Bakker; Remko Schotte; Helene Strick-Marchand; Sandra J. de Geus; Stephan M. Pouw; Martino Böhne; Arie Voordouw; Kees Weijer; James P. Di Santo; Hergen Spits

The homeostatic control mechanisms regulating human leukocyte numbers are poorly understood. Here, we assessed the role of phagocytes in this process using human immune system (HIS) BALB/c Rag2−/−IL-2Rγc−/− mice in which human leukocytes are generated from transplanted hematopoietic progenitor cells. Interactions between signal regulatory protein alpha (SIRPα; expressed on phagocytes) and CD47 (expressed on hematopoietic cells) negatively regulate phagocyte activity of macrophages and other phagocytic cells. We previously showed that B cells develop and survive robustly in HIS mice, whereas T and natural killer (NK) cells survive poorly. Because human CD47 does not interact with BALB/c mouse SIRPα, we introduced functional CD47/SIRPα interactions in HIS mice by transducing mouse CD47 into human progenitor cells. Here, we show that this procedure resulted in a dramatic and selective improvement of progenitor cell engraftment and human T- and NK-cell homeostasis in HIS mouse peripheral lymphoid organs. The amount of engrafted human B cells also increased but much less than that of T and NK cells, and total plasma IgM and IgG concentrations increased 68- and 35-fold, respectively. Whereas T cells exhibit an activated/memory phenotype in the absence of functional CD47/SIRPα interactions, human T cells accumulated as CD4+ or CD8+ single-positive, naive, resting T cells in the presence of functional CD47/SIRPα interactions. Thus, in addition to signals mediated by T cell receptor (TCR)/MHC and/or IL/IL receptor interactions, sensing of cell surface CD47 expression by phagocyte SIRPα is a critical determinant of T- and NK-cell homeostasis under steady-state conditions in vivo.


Journal of Immunology | 2008

Lymphocytes Support Oval Cell-Dependent Liver Regeneration

Helene Strick-Marchand; Guillemette X. Masse; Mary C. Weiss; James P. Di Santo

In case of hepatic damage, the liver uses a unique regeneration mechanism through proliferation of hepatocytes. If this process is inhibited, bipotent oval stem cells proliferate and differentiate to hepatocytes and bile ducts, thus restoring liver mass. Although oval cell accumulation in the liver is often associated with inflammatory processes, the role of lymphocytes in oval cell-mediated hepatic regeneration is poorly understood. We treated wild-type and immunodeficient mice with an oval cell-inducing diet: in the absence of T cells (CD3ε−/− and Rag2−/−) there were fewer oval cells, whereas in alymphoid mice (Rag2−/−γc−/−) a strongly reduced oval cell response and higher mortality, due to liver failure, was observed. Adoptive transfer of T cells into alymphoid mice protected them from liver failure, but was insufficient to restore the oval cell response. Treatment of Rag2−/− mice with an NK cell-depleting Ab resulted in a significantly diminished oval cell response. These genetic experiments point to a major role for NK and T cells in oval cell expansion. In wild-type mice, oval cell proliferation is accompanied by an intrahepatic inflammatory response, characterized by the recruitment of Kupffer, NK, NKT, and T cells. Under these conditions, lymphocytes produce TH1 proinflammatory cytokines (IFN-γ and TNF-α) that are mitogenic for oval cells. Our data suggest that T and NK lymphocytes stimulate oval cell expansion by local cytokine secretion. This beneficial cross-talk between the immune system and liver stem cells operates under noninfectious conditions and could promote tissue regeneration following acute liver damage.


Proceedings of the National Academy of Sciences of the United States of America | 2011

IL-15 transpresentation promotes both human T-cell reconstitution and T-cell–dependent antibody responses in vivo

Nicholas D. Huntington; Nuno L. Alves; Nicolas Legrand; Annick Lim; Helene Strick-Marchand; Jean-Jacques Mention; Ariane Plet; Kees Weijer; Yannick Jacques; Pablo D. Becker; Carlos A. Guzmán; Patrick Soussan; Dina Kremsdorf; Hergen Spits; James P. Di Santo

Cytokine immunotherapies targeting T lymphocytes are attractive clinical interventions against viruses and tumors. In the mouse, the homeostasis of memory α/β CD8+ T cells and natural killer (NK) cells is significantly improved with increased IL-15 bioavailability. In contrast, the role of “transpresented” IL-15 on human T-cell development and homeostasis in vivo is unknown. We found that both CD8 and CD4 T cells in human immune system (HIS) mice are highly sensitive to transpresented IL-15 in vivo, with both naïve (CD62L+CD45RA+) and memory phenotype (CD62L−CD45RO+) subsets being significantly increased following IL-15 “boosting.” The unexpected global improvement in human T-cell homeostasis involved enhanced proliferation and survival of both naïve and memory phenotype peripheral T cells, which potentiated B-cell responses by increasing the frequency of antigen-specific responses following immunization. Transpresented IL-15 did not modify T-cell activation patterns or alter the global T-cell receptor (TCR) repertoire diversity. Our results indicate an unexpected effect of IL-15 on human T cells in vivo, in particular on CD4+ T cells. As IL-15 promotes human peripheral T-cell homeostasis and increases the frequency of neutralizing antibody responses in HIS mice, IL-15 immunotherapy could be envisaged as a unique approach to improve vaccine responses in the clinical setting.


Hepatology | 2004

Transcription factor HNF-6/OC-1 inhibits the stimulation of the HNF-3α/Foxa1 gene by TGF-β in mouse liver

Nicolas Plumb-Rudewiez; Frédéric Clotman; Helene Strick-Marchand; Christophe E. Pierreux; Mary C. Weiss; Guy G. Rousseau; Frédéric P. Lemaigre

A network of liver‐enriched transcription factors controls differentiation and morphogenesis of the liver. These factors interact via direct, feedback, and autoregulatory loops. Previous work has suggested that hepatocyte nuclear factor (HNF)‐6/OC‐1 and HNF‐3α/FoxA1 participate coordinately in this hepatic network. We investigated how HNF‐6 controls the expression of Foxa1. We observed that Foxa1 expression was upregulated in the liver of Hnf6−/− mouse embryos and in bipotential mouse embryonic liver (BMEL) cell lines derived from embryonic Hnf6−/− liver, suggesting that HNF‐6 inhibits the expression of Foxa1. Because no evidence for a direct repression of Foxa1 by HNF‐6 was found, we postulated the existence of an indirect mechanism. We found that the expression of a mediator and targets of the transforming growth factor beta (TGF‐β) signaling was increased both in Hnf6−/− liver and in Hnf6−/− BMEL cell lines. Using these cell lines, we demonstrated that TGF‐β signaling was increased in the absence of HNF‐6, and that this resulted from upregulation of TGF‐β receptor II expression. We also found that TGF‐β can stimulate the expression of Foxa1 in Hnf6+/+ cells and that inhibition of TGF‐β signaling in Hnf6−/− cells down‐regulates the expression of Foxa1. In conclusion, we propose that Foxa1 upregulation in the absence of HNF‐6 results from increased TGF‐β signaling via increased expression of the TGF‐β receptor II. We further conclude that HNF‐6 inhibits Foxa1 by inhibiting the activity of the TGF‐β signaling pathway. This identifies a new mechanism of interaction between liver‐enriched transcription factors whereby one factor indirectly controls another by modulating the activity of a signaling pathway. (HEPATOLOGY 2004;40:1266–1274.)


PLOS ONE | 2015

A Novel Mouse Model for Stable Engraftment of a Human Immune System and Human Hepatocytes

Helene Strick-Marchand; Mathilde Dusséaux; Sylvie Darche; Nicholas D. Huntington; Nicolas Legrand; Erwan Corcuff; James Ahodantin; Kees Weijer; Hergen Spits; Dina Kremsdorf; James P. Di Santo

Hepatic infections by hepatitis B virus (HBV), hepatitis C virus (HCV) and Plasmodium parasites leading to acute or chronic diseases constitute a global health challenge. The species tropism of these hepatotropic pathogens is restricted to chimpanzees and humans, thus model systems to study their pathological mechanisms are severely limited. Although these pathogens infect hepatocytes, disease pathology is intimately related to the degree and quality of the immune response. As a first step to decipher the immune response to infected hepatocytes, we developed an animal model harboring both a human immune system (HIS) and human hepatocytes (HUHEP) in BALB/c Rag2-/- IL-2Rγc-/- NOD.sirpa uPAtg/tg mice. The extent and kinetics of human hepatocyte engraftment were similar between HUHEP and HIS-HUHEP mice. Transplanted human hepatocytes were polarized and mature in vivo, resulting in 20–50% liver chimerism in these models. Human myeloid and lymphoid cell lineages developed at similar frequencies in HIS and HIS-HUHEP mice, and splenic and hepatic compartments were humanized with mature B cells, NK cells and naïve T cells, as well as monocytes and dendritic cells. Taken together, these results demonstrate that HIS-HUHEP mice can be stably (> 5 months) and robustly engrafted with a humanized immune system and chimeric human liver. This novel HIS-HUHEP model provides a platform to investigate human immune responses against hepatotropic pathogens and to test novel drug strategies or vaccine candidates.

Collaboration


Dive into the Helene Strick-Marchand's collaboration.

Top Co-Authors

Avatar

Hergen Spits

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicholas D. Huntington

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Mary C. Weiss

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kees Weijer

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ludovic Vallier

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge